Unextendible maximally entangled bases and mutually unbiased bases

被引:46
|
作者
Chen, Bin [1 ]
Fei, Shao-Ming [1 ,2 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
来源
PHYSICAL REVIEW A | 2013年 / 88卷 / 03期
关键词
PRODUCT BASES;
D O I
10.1103/PhysRevA.88.034301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study an unextendible maximally entangled basis in arbitrary bipartite spaces. A systematic way of constructing a set of d(2) orthonormal maximally entangled states in C-d circle times C-d' (d'/2 < d < d') is provided. The complementary space of the set of these d(2) orthonormal maximally entangled states contains no maximally entangled states that are orthogonal to all of them. Furthermore, we investigate mutually unbiased bases in which all the bases are unextendible maximally entangled ones. We present two unextendible maximally entangled bases in C-2 circle times C-3 which are mutually unbiased.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Unextendible Maximally Entangled Bases and Mutually Unbiased Bases in Multipartite Systems
    Zhang, Ya-Jing
    Zhao, Hui
    Jing, Naihuan
    Fei, Shao-Ming
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (11) : 3425 - 3430
  • [2] Unextendible Maximally Entangled Bases and Mutually Unbiased Bases in ℂd ⊗ ℂd′
    Hua Nan
    Yuan-Hong Tao
    Lin-Song Li
    Jun Zhang
    [J]. International Journal of Theoretical Physics, 2015, 54 : 927 - 932
  • [3] The Construction of Mutually Unbiased Unextendible Maximally Entangled Bases
    Tang, Liang
    Xiong, Si-yu
    Li, Wen-jing
    Bai, Ming-qiang
    Mo, Zhi-wen
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (06) : 2054 - 2065
  • [4] Unextendible Maximally Entangled Bases and Mutually Unbiased Bases in Cd ⊗ Cd′
    Nan, Hua
    Tao, Yuan-Hong
    Li, Lin-Song
    Zhang, Jun
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (03) : 927 - 932
  • [5] A Note on Mutually Unbiased Unextendible Maximally Entangled Bases in
    Nizamidin, Halqem
    Ma, Teng
    Fei, Shao-Ming
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (01) : 326 - 333
  • [6] The Construction of Mutually Unbiased Unextendible Maximally Entangled Bases
    Liang Tang
    Si-yu Xiong
    Wen-jing Li
    Ming-qiang Bai
    Zhi-wen Mo
    [J]. International Journal of Theoretical Physics, 2021, 60 : 2054 - 2065
  • [7] CONSTRUCTING MUTUALLY UNBIASED BASES FROM UNEXTENDIBLE MAXIMALLY ENTANGLED BASES
    Zhao, Hui
    Zhang, Lin
    Fei, Shao-Ming
    Jing, Naihuan
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2020, 85 (01) : 105 - 118
  • [8] Unextendible Maximally Entangled Bases and Mutually Unbiased Bases in Multipartite Systems
    Ya-Jing Zhang
    Hui Zhao
    Naihuan Jing
    Shao-Ming Fei
    [J]. International Journal of Theoretical Physics, 2017, 56 : 3425 - 3430
  • [9] Mutually Unbiased Unextendible Maximally Entangled Bases in Cd ⊗ Cd+1
    Song, Yi-yang
    Zhang, Gui-jun
    Xu, Ling-shan
    Tao, Yuan-hong
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (12) : 3785 - 3794
  • [10] Mutually unbiased unextendible maximally entangled bases in some systems of higher dimension
    Xiong, Zong-Xing
    Zheng, Zhu-Jun
    Fei, Shao-Ming
    [J]. QUANTUM INFORMATION PROCESSING, 2020, 19 (12)