N-methyl-D-aspartate excitotoxicity:: Relationships among plasma membrane potential, Na+/Ca2+ exchange, mitochondrial Ca2+ overload, and cytoplasmic concentrations of Ca2+, H+, and K+

被引:83
|
作者
Kiedrowski, L
机构
[1] Univ Illinois, Coll Med, Dept Psychiat, Inst Psychiat, Chicago, IL 60612 USA
[2] Univ Illinois, Coll Med, Dept Pharmacol, Inst Psychiat, Chicago, IL 60612 USA
关键词
D O I
10.1124/mol.56.3.619
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A high cytoplasmic Na+ concentration may contribute to N-methyl-D-aspartate (NMDA)-induced excitotoxicity by promoting Ca2+ influx via reverse operation of the Na+/Ca2+ exchanger(NaCaX), but may simultaneously decrease the electrochemical Ca2+ driving force by depolarizing the plasma membrane (PM); Digital fluorescence microscopy was used to compare the effects of Na+ versus ions that do not support the NaCaX operation, i.e., N-methyl-D-glucamine(+) or Li+, on: PM potential; cytoplasmic concentrations of Ca2+, H+, and K+; mitochondrial Ca2+ storage; and viability of primary cultures of cerebellar granule cells exposed to NMDA receptor agonists. In the presence of Na+ or Li+, NMDA depolarized the PM and decreased cytoplasmic pH (pH(C)); in the presence of Li+, Ca2+ influx was reduced, mitochondrial Ca2+ overload did not occur, and the cytoplasm became more acidified than in the presence of Na+. In the presence of N-methyl-D-glucamine(+), NMDA instantly hyperpolarized the PM, but further changes in PM potential and pH(C) were Ca-dependent. In the absence of Ca2+, hyperpolarization persisted, pH(C) was decreasing very slowly, K+ was retained in the cytoplasm, and cerebellar granule cells survived the challenge; in the presence of Ca2+, pH(C) dropped rapidly, the K+ concentration gradient across the PM began to collapse as the PM began to depolarize, and Ca2+ influx and excitotoxicity greatly increased. These results indicate that the dominant, very likely excitotoxic, component of NMDA-induced Ca2+ influx is mediated by reverse NaCaX and that direct Ca2+ influx via NMDA channels is curtailed by Na-dependent PM depolarization.
引用
收藏
页码:619 / 632
页数:14
相关论文
共 50 条
  • [1] Mitochondrial Ca2+ flux through Na+/Ca2+ exchange
    Kim, Bongyu
    Matsuoka, Satoshi
    SODIUM-CALCIUM EXCHANGE AND THE PLASMA MEMBRANE CA2+-ATPASE IN CELL FUNCTION: FIFTH INTERNATIONAL CONFERENCE, 2007, 1099 : 507 - 511
  • [2] Na+/Ca2+ Exchange and Cellular Ca2+ Homeostasis
    John P. Reeves
    Journal of Bioenergetics and Biomembranes, 1998, 30 : 151 - 160
  • [3] CA2+ HANDLING IN SMOOTH-MUSCLE - INTERACTIONS AMONG THE NA+/K+ ATPASE, THE NA+/CA2+ EXCHANGER, AND THE NA+/H+ EXCHANGER
    SCHEID, CR
    FAY, FS
    MOORE, EDW
    HONEYMAN, TW
    NEUROUROLOGY AND URODYNAMICS, 1992, 11 (03) : 261 - 263
  • [4] Na+/Ca2+ exchange and cellular Ca2+ homeostasis
    Reeves, JP
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1998, 30 (02) : 151 - 160
  • [5] Ca2+/H+ exchange via the plasma membrane Ca2+ ATPase in skeletal muscle
    DeSantiago, J.
    Batlle, D.
    Khilnani, M.
    Dedhia, S.
    Kulczyk, J.
    Duque, R.
    Ruiz, J.
    Pena-Rasgado, C.
    Rasgado-Flores, Hector
    FRONTIERS IN BIOSCIENCE, 2007, 12 : 4641 - 4660
  • [6] Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity
    Bano, D
    Young, KW
    Guerin, CJ
    LeFeuvre, R
    Rothwell, NJ
    Naldini, L
    Rizzuto, R
    Carafoli, E
    Nicotera, P
    CELL, 2005, 120 (02) : 275 - 285
  • [7] NA+/H+ NA+/CA2+ EXCHANGE ENHANCE AND ATP-SENSITIVE K+ CHANNELS AMELIORATE CELL CA2+ RISE IN ISCHEMIA
    HARADA, K
    FRANKLIN, A
    JOHNSON, RG
    GROSSMAN, W
    MORGAN, JP
    CIRCULATION, 1992, 86 (04) : 478 - 478
  • [8] Ion exchange equilibrium between cation exchange membranes and aqueous solutions of K+/Na+, K+/Ca2+, and Na+/Ca2+
    Ch. Hannachi
    B. Hamrouni
    M. Dhahbi
    Ionics, 2009, 15 : 445 - 451
  • [9] Ion exchange equilibrium between cation exchange membranes and aqueous solutions of K+/Na+, K+/Ca2+, and Na+/Ca2+
    Hannachi, Ch.
    Hamrouni, B.
    Dhahbi, M.
    IONICS, 2009, 15 (04) : 445 - 451
  • [10] NA+/H+ AND NA+/CA2+ EXCHANGE IN REGULATION OF [NA+](I) AND [CA2+](I) DURING METABOLIC INHIBITION
    SATOH, H
    HAYASHI, H
    KATOH, H
    TERADA, H
    KOBAYASHI, A
    AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1995, 268 (03): : H1239 - H1248