Microstructure decomposition and unique mechanical properties in an ultrafine-grained Al-Zn alloy processed by high-pressure torsion

被引:2
|
作者
Baris, A. [1 ]
Chinh, N. Q. [1 ]
Valiev, R. Z. [2 ,3 ]
Langdon, T. G. [4 ,5 ,6 ]
机构
[1] Eotvos Lorand Univ, Dept Mat Phys, H-1117 Budapest, Hungary
[2] Ufa State Aviat Tech Univ, Inst Phys Adv Mat, Ufa 450000, Russia
[3] St Petersburg State Polytech Univ, Res Lab Mech New Nanomat, St Petersburg 195251, Russia
[4] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA
[5] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA
[6] Univ Southampton, Fac Engn & Environm, Mat Res Grp, Southampton SO17 1BJ, Hants, England
来源
KOVOVE MATERIALY-METALLIC MATERIALS | 2015年 / 53卷 / 04期
基金
欧洲研究理事会; 匈牙利科学研究基金会;
关键词
grain boundary sliding; indentation; micro-pillars; strain rate sensitivity; ultrafine grains; SEVERE PLASTIC-DEFORMATION; MICROMETER-SCALE; ALUMINUM; EVOLUTION; METALS; STRAIN; FLOW; TEMPERATURES; BEHAVIOR; PHASE;
D O I
10.4149/km_2015_4_251
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An ultrafine-grained (UFG) A1-30wt.%Zn alloy was processed by high-pressure torsion (HPT) and then the mechanical and microstructural properties were investigated using depth-sensing indentations (DSI), focused ion beam (FIB), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Emphasis was placed on the microstructure changes due to HPT processing as well as the effects of grain boundaries and the unusually high strain rate sensitivity. The deformation characteristics are explained by the formation of a Zn-rich phase which wets the Al/Al grain boundaries and enhances the role of grain boundary sliding in this UFG alloy. The occurrence of intensive grain boundary sliding in this UFG alloy at room temperature was also demonstrated by deforming micro-pillars. It is shown that, as a result of grain boundary sliding, the plastic deformation process of the UFG samples remains stable even at the micro-scale without the intermittent flow and detrimental strain avalanches which are an inherent feature of micro-size conventional crystals. This result illustrates the advantage of using UFG materials for effective applications in micro-devices.
引用
收藏
页码:251 / 258
页数:8
相关论文
共 50 条
  • [1] Influence of Zn content on the microstructure and mechanical performance of ultrafine-grained Al-Zn alloys processed by high-pressure torsion
    Chinh, Nguyen Q.
    Jenei, Peter
    Gubicza, Jeno
    Bobruk, Elena V.
    Valiev, Ruslan Z.
    Langdon, Terence G.
    MATERIALS LETTERS, 2017, 186 : 334 - 337
  • [2] Unique microstructural and mechanical properties of Al-Zn alloys processed by high-pressure torsion
    Chinh, Nguyen Q.
    Kovacs, Zsolt
    5TH INTERNATIONAL CONFERENCE ON COMPETITIVE MATERIALS AND TECHNOLOGY PROCESSES, 2019, 613
  • [3] Microstructure and mechanical properties of ultrafine-grained aluminum consolidated by high-pressure torsion
    Khajouei-Nezhad, Mohammad
    Paydar, Mohammad Hossein
    Ebrahimi, Ramin
    Jenei, Peter
    Nagy, Peter
    Gubicza, Jeno
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 682 : 501 - 508
  • [4] The influence of graphene oxide on the microstructure and properties of ultrafine-grained copper processed by high-pressure torsion
    Emerla, Maria
    Bazarnik, Piotr
    Huang, Yi
    Wojciechowska, Anita
    Ciemiorek, Marta
    Pura, Jaroslaw
    Wieczorek-Czarnocka, Monika
    Kenichi, Purbayanto Muhammad Abiyyu
    Ebska, Agnieszka Jastrz
    Lewandowska, Malgorzata
    Langdon, Terence G.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1005
  • [5] Fatigue Behavior of an Ultrafine-Grained Al-Mg-Si Alloy Processed by High-Pressure Torsion
    Murashkin, Maxim
    Sabirov, Ilchat
    Prosvirnin, Dmitriy
    Ovid'ko, Ilya
    Terentiev, Vladimir
    Valiev, Ruslan
    Dobatkin, Sergey
    METALS, 2015, 5 (02) : 578 - 590
  • [6] Characterizing Microstructural and Mechanical Properties of Al-Zn Alloys Processed by High-Pressure Torsion
    Chinh, Nguyen Q.
    Szommer, Peter
    Gubicza, Jeno
    El-Tahawy, Moustafa
    Bobruk, Elena V.
    Murashkin, Maxim Yu.
    Valiev, Ruslan Z.
    ADVANCED ENGINEERING MATERIALS, 2020, 22 (01)
  • [7] Outstanding mechanical properties of ultrafine-grained Al7075 alloys by high-pressure torsion
    Kim, Hyogeon
    Ha, Hyesu
    Lee, Jungsub
    Son, Sujung
    Kim, Hyoung Seop
    Sung, Hyokyung
    Seol, Jae Bok
    Kim, Jung Gi
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 810 (810):
  • [8] Age Hardening in Ultrafine-Grained Al-2 Pct Fe Alloy Processed by High-Pressure Torsion
    Cubero-Sesin, Jorge M.
    Horita, Zenji
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2015, 46A (06): : 2614 - 2624
  • [9] Age Hardening in Ultrafine-Grained Al-2 Pct Fe Alloy Processed by High-Pressure Torsion
    Jorge M. Cubero-Sesin
    Zenji Horita
    Metallurgical and Materials Transactions A, 2015, 46 : 2614 - 2624
  • [10] Mechanical and biological behavior of ultrafine-grained Ti alloy aneurysm clip processed using high-pressure torsion
    Um, Ho Yong
    Park, Byung Ho
    Ahn, Dong-Hyun
    Abd El Aal, Mohamed Ibrahim
    Park, Jaechan
    Kim, Hyoung Seop
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2017, 68 : 203 - 209