SARS-CoV and SARS-CoV-2 main protease residue interaction networks change when bound to inhibitor N3

被引:20
|
作者
Griffin, Jeddidiah W. D. [1 ]
机构
[1] Mars Hill Univ, Dept Nat Sci, Mars Hill, NC 28754 USA
关键词
COVID-19; 2019-CoV; M-pro; 3CLpro; Betweenness;
D O I
10.1016/j.jsb.2020.107575
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
COVID-19 is a respiratory disease caused by the coronavirus SARS-CoV-2. SARS-CoV-2 has many similarities with SARS-CoV. Both viruses rely on a protease called the main protease, or M-p(ro), for replication. Therefore, inhibiting M-p(ro) may be a successful strategy for treating COVID-19. Structures of the main proteases of SARS-CoV and SARS-CoV-2 with and without inhibitor N3 are available in the Protein Data Bank. Comparing these structures revealed residue interaction network changes associated with N3 inhibition. Comparing network clustering with and without inhibitor N3 identified the formation of a cluster of residues 17, 18, 30-33, 70, 95, 98, 103, 117, 122, and 177 as a network change in both viral proteases when bound to inhibitor N3. Betweenness and stress centrality differences as well as differences in bond energies and relative B-factors when comparing free M-p(ro) to inhibitor-bound M-p(ro) identified residues 131, 175, 182, and 185 as possibly conformationally relevant when bound to the inhibitor N3. Taken together, these results provide insight into conformational changes of betacoronavirus M(p)(ro)s when bound to an inhibitor.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Non-conventional interactions of N3 inhibitor with the main protease of SARS-CoV and SARS-CoV-2
    Garcia-Gutierrez, Ponciano
    Zubillaga, Rafael A.
    Ibarra, Ilich A.
    Martinez, Ana
    Vargas, Rubicelia
    Garza, Jorge
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 4669 - 4675
  • [2] Impact of dimerization and N3 binding on molecular dynamics of SARS-CoV and SARS-CoV-2 main proteases
    Tekpinar, Mustafa
    Yildirim, Ahmet
    [J]. JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (14): : 6243 - 6254
  • [3] Protein structural heterogeneity: A hypothesis for the basis of proteolytic recognition by the main protease of SARS-CoV and SARS-CoV-2
    Behnam, Mira A. M.
    [J]. BIOCHIMIE, 2021, 182 : 177 - 184
  • [4] A cyclic peptide inhibitor of the SARS-CoV-2 main protease
    Kreutzer, Adam G.
    Krumberger, Maj
    Diessner, Elizabeth M.
    Parrocha, Chelsea Marie T.
    Morris, Michael A.
    Guaglianone, Gretchen
    Butts, Carter T.
    Nowick, James S.
    [J]. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2021, 221
  • [5] Activation and maturation of SARS-CoV main protease
    Bin Xia
    Xue Kang
    [J]. Protein & Cell., 2011, 2 (04) - 290
  • [6] Activation and maturation of SARS-CoV main protease
    Xia, Bin
    Kang, Xue
    [J]. PROTEIN & CELL, 2011, 2 (04) : 282 - 290
  • [7] Discovery of 3CLpro inhibitor of SARS-CoV-2 main protease
    Kuang, Yi
    Ma, Xiaodong
    Shen, Wenjing
    Rao, Qingqing
    Yang, Shengxiang
    [J]. FUTURE SCIENCE OA, 2023, 9 (04):
  • [8] SARS-CoV-2 Main Protease as Target
    不详
    [J]. CLINICAL PHARMACOLOGY & THERAPEUTICS, 2020, 107 (06) : 1278 - 1278
  • [9] Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics
    Petersen, Eskild
    Koopmans, Marion
    Go, Unyeong
    Hamer, Davidson H.
    Petrosillo, Nicola
    Castelli, Francesco
    Storgaard, Merete
    Al Khalili, Sulien
    Simonsen, Lone
    [J]. LANCET INFECTIOUS DISEASES, 2020, 20 (09): : E238 - E244
  • [10] Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics
    Standl, Fabian
    Joeckel, Karl-Heinz
    Brune, Bastian
    Schmidt, Boerge
    Stang, Andreas
    [J]. LANCET INFECTIOUS DISEASES, 2021, 21 (04): : E77 - E77