ON THE PICARD NUMBER OF DIVISORS IN FANO MANIFOLDS

被引:0
|
作者
Casagrande, Cinzia [1 ]
机构
[1] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2012年 / 45卷 / 03期
关键词
EXTREMAL RAYS; CONTRACTIONS; VARIETIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a complex Fano manifold of arbitrary dimension, and D a prime divisor in X. We consider the image N-1(D, X) of N-1(D) in N-1(X) under the natural push-forward of 1-cycles. We show that rho(X) - rho(D) <= codim N-1(D, X) <= 8. Moreover if codim N-1(D, X) >= 3, then either X congruent to S x T where S is a Del Pezzo surface, or codim N-1(D, X) = 3 and X has a fibration in Del Pezzo surfaces onto a Fano manifold T such that rho(X) - rho(T) = 4.
引用
收藏
页码:363 / 403
页数:41
相关论文
共 50 条