Frog sound identification using extended k-nearest neighbor classifier

被引:0
|
作者
Mukahar, Nordiana [1 ,2 ]
Rosdi, Bakhtiar Affendi [1 ]
Ramli, Dzati Athiar [1 ]
Jaafar, Haryati [3 ]
机构
[1] Univ Sains Malaysia, Intelligent Biometr Grp, Sch Elect & Elect Engn, Engn Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia
[2] Univ Teknol MARA, Fac Elect Engn, Shah Alam 40450, Malaysia
[3] Univ Malaysia Perlis, UniCity Alam Sg Chuchuh, Fac Engn Technol, Padang Besar 02100, Perlis, Malaysia
关键词
D O I
10.1088/1742-6596/890/1/012070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Frog sound identification based on the vocalization becomes important for biological research and environmental monitoring. As a result, different types of feature extractions and classifiers have been employed to evaluate the accuracy of frog sound identification. This paper presents a frog sound identification with Extended k-Nearest Neighbor (EKNN) classifier. The EKNN classifier integrates the nearest neighbors and mutual sharing of neighborhood concepts, with the aims of improving the classification performance. It makes a prediction based on who are the nearest neighbors of the testing sample and who consider the testing sample as their nearest neighbors. In order to evaluate the classification performance in frog sound identification, the EKNN classifier is compared with competing classifier, k-Nearest Neighbor (KNN), Fuzzy k-Nearest Neighbor (FKNN) k - General Nearest Neighbor (KGNN)and Mutual k-Nearest Neighbor (MKNN) on the recorded sounds of 15 frog species obtained in Malaysia forest. The recorded sounds have been segmented using Short Time Energy and Short Time Average Zero Crossing Rate (STE+STAZCR), sinusoidal modeling (SM), manual and the combination of Energy (E) and Zero Crossing Rate (ZCR) (E+ZCR) while the features are extracted by Mel Frequency Cepstrum Coefficient (MFCC). The experimental results have shown that the EKNCN classifier exhibits the best performance in terms of accuracy compared to the competing classifiers, KNN, FKNN, GKNN and MKNN for all cases.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Hybrid k-Nearest Neighbor Classifier
    Yu, Zhiwen
    Chen, Hantao
    Liu, Jiming
    You, Jane
    Leung, Hareton
    Han, Guoqiang
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (06) : 1263 - 1275
  • [2] Evidential Editing K-Nearest Neighbor Classifier
    Jiao, Lianmeng
    Denoeux, Thierry
    Pan, Quan
    [J]. SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2015, 2015, 9161 : 461 - 471
  • [3] A Fast k-Nearest Neighbor Classifier Using Unsupervised Clustering
    Vajda, Szilard
    Santosh, K. C.
    [J]. RECENT TRENDS IN IMAGE PROCESSING AND PATTERN RECOGNITION (RTIP2R 2016), 2017, 709 : 185 - 193
  • [4] A fall detection system using k-nearest neighbor classifier
    Liu, Chien-Liang
    Lee, Chia-Hoang
    Lin, Ping-Min
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (10) : 7174 - 7181
  • [5] Optimization Strategies for the k-Nearest Neighbor Classifier
    Yepdjio Nkouanga H.
    Vajda S.
    [J]. SN Computer Science, 4 (1)
  • [6] Classification of facial expressions using K-Nearest Neighbor Classifier
    Sohail, Abu Sayeed Md.
    Bhattacharya, Prabir
    [J]. COMPUTER VISION/COMPUTER GRAPHICS COLLABORATION TECHNIQUES, 2007, 4418 : 555 - +
  • [7] Detection and Localization of Myocardial Infarction using K-nearest Neighbor Classifier
    Muhammad Arif
    Ijaz A. Malagore
    Fayyaz A. Afsar
    [J]. Journal of Medical Systems, 2012, 36 : 279 - 289
  • [8] K-Nearest Neighbor Classifier for Signature Verification System
    Abdelrahaman, Ahmed A. A.
    Abdallah, Ahmed M. E.
    [J]. 2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONICS ENGINEERING (ICCEEE), 2013, : 58 - 62
  • [9] Detection and Localization of Myocardial Infarction using K-nearest Neighbor Classifier
    Arif, Muhammad
    Malagore, Ijaz A.
    Afsar, Fayyaz A.
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (01) : 279 - 289
  • [10] Feature-weighted k-nearest neighbor classifier
    Vivencio, Diego P.
    Hruschka, Estevarn R., Jr.
    Nicoletti, M. do Carmo
    dos Santos, Edimilson B.
    Galvao, Sebastian D. C. O.
    [J]. 2007 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE, VOLS 1 AND 2, 2007, : 481 - +