A greedy algorithm for interval greedoids

被引:3
|
作者
Mao, Hua [1 ]
机构
[1] Hebei Univ, Dept Math, Baoding 071002, Peoples R China
来源
OPEN MATHEMATICS | 2018年 / 16卷
关键词
Interval greedoid; Exchangeable system; Greedy algorithm; Positive weight;
D O I
10.1515/math-2018-0026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the greedy algorithm provided in this paperworks for interval greedoids with positive weights under some conditions, and also characterize an exchangeable systemto be an interval greedoid with the assistance of the greedy algorithm.
引用
收藏
页码:260 / 267
页数:8
相关论文
共 50 条
  • [1] Sufficient conditions for the optimality of the greedy algorithm in greedoids
    Szeszler, David
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (01) : 287 - 302
  • [2] Sufficient conditions for the optimality of the greedy algorithm in greedoids
    Dávid Szeszlér
    Journal of Combinatorial Optimization, 2022, 44 : 287 - 302
  • [3] Oriented Interval Greedoids
    Franco Saliola
    Hugh Thomas
    Discrete & Computational Geometry, 2012, 47 : 64 - 105
  • [4] Oriented Interval Greedoids
    Saliola, Franco
    Thomas, Hugh
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 47 (01) : 64 - 105
  • [5] A Class of Greedy Algorithms and Its Relation to Greedoids
    Nedunuri, Srinivas
    Smith, Douglas R.
    Cook, William R.
    THEORETICAL ASPECTS OF COMPUTING, 2010, 6255 : 352 - +
  • [6] NON-INTERVAL GREEDOIDS AND THE TRANSPOSITION PROPERTY
    KORTE, B
    LOVASZ, L
    DISCRETE MATHEMATICS, 1986, 59 (03) : 297 - 314
  • [7] A Data Placement Strategy Based on Dynamic Interval Mapping And Greedy Algorithm
    Ge Junwei
    Wang Zhangtao
    Fang Yiqiu
    2012 4TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND INFORMATION APPLICATION TECHNOLOGY (ESIAT 2012), 2013, 14 : 589 - 594
  • [8] Comparison of Purely Greedy and Orthogonal Greedy Algorithm
    Vishnevetskiy, K. S.
    MATHEMATICAL NOTES, 2024, 115 (1-2) : 37 - 43
  • [9] Comparison of Pure Greedy Algorithm with Pure Greedy Algorithm in a Pair of Dictionaries
    Orlova, A. S.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2023, 78 (02) : 57 - 66
  • [10] The thresholding greedy algorithm, greedy bases, and duality
    Dilworth, SJ
    Kalton, NJ
    Kutzarova, D
    Temlyakov, VN
    CONSTRUCTIVE APPROXIMATION, 2003, 19 (04) : 575 - 597