Estimation of heterogeneous autoregressive parameters with short panel data

被引:9
|
作者
Mavroeidis, Sophocles [1 ]
Sasaki, Yuya [2 ]
Welch, Ivo [3 ]
机构
[1] Univ Oxford, Dept Econ, Oxford OX1 2JD, England
[2] Johns Hopkins Univ, Dept Econ, Baltimore, MD 21218 USA
[3] Univ Calif Los Angeles, Anderson Grad Sch Management, Los Angeles, CA 90024 USA
关键词
Panel data; Employment dynamics; Heterogeneous autoregressive parameters; Initial conditions; Maximum likelihood; INITIAL CONDITIONS; DATA MODELS;
D O I
10.1016/j.jeconom.2015.05.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper presents a maximum likelihood approach to estimation of cross sectional distributions of heterogeneous autoregressive (AR) parameters with short panel data. We construct a panel likelihood by integrating the unknown cross sectional density of heterogeneous AR parameters with respect to a known time-series data generating kernel. The solution to this extremal criterion recovers the unknown density of heterogeneous AR parameters. Applying our method to a model of employment dynamics with the firm-level data of Arellano and Bond (1991), we find that adjustment rates of employment are significantly heterogeneous across firms. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:219 / 235
页数:17
相关论文
共 50 条