ROBUST, SPARSE AND SCALABLE INFERENCE USING BOOTSTRAP AND VARIABLE SELECTION FUSION

被引:0
|
作者
Mozafari-Majd, Emadaldin [1 ]
Koivunen, Visa [1 ]
机构
[1] Aalto Univ, Dept Signal Proc & Acoust, POB 15400, FU-0076 Aalto, Finland
基金
芬兰科学院;
关键词
statistical inference; robust; bootstrap; sparsity; high-dimensional; large-scale; REGRESSION; RIDGE;
D O I
10.1109/camsap45676.2019.9022472
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we address the challenging problem of conducting statistical inference for large-scale data sets in the presence of sparsity and outlying observations. In particular, processing and storing such data on a single computing node may be infeasible due to its high volume and dimensionality. Therefore, the large-scale data is subdivided into smaller distinct subsets that may be stored and processed in different nodes. We propose a robust and scalable statistical inference method using a two-stage algorithm where variable selection is performed via fusing the selected support from each distinct subset of data. The actual parameter and confidence interval estimation takes place in the second stage using a robust extension of Bag of Little Bootstraps (BLB) technique. In order to exploit sparsity and ensure robustness, MM-Lasso estimator is used to select variables for each subset of data. The selections are then fused to find the support for the original large-scale data. In the second stage, the robust MM-estimator is used for the selected support. The simulation studies demonstrated the highly reliable performance of the algorithm in variable selection and providing reliable confidence intervals even if the estimation problem in the subsets is slightly under-determined.
引用
收藏
页码:271 / 275
页数:5
相关论文
共 50 条
  • [1] Robust model selection using fast and robust bootstrap
    Salibian-Barrera, Matlas
    Van Aelst, Stefan
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (12) : 5121 - 5135
  • [2] Feature selection using sparse Bayesian inference
    Brandes, T. Scott
    Baxter, James R.
    Woodworth, Jonathan
    [J]. ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXI, 2014, 9093
  • [3] ROBUST INFERENCE VIA MULTIPLIER BOOTSTRAP
    Chen, Xi
    Zhou, Wen-Xin
    [J]. ANNALS OF STATISTICS, 2020, 48 (03): : 1665 - 1691
  • [4] Robust sparse regression and tuning parameter selection via the efficient bootstrap information criteria
    Park, Heewon
    Sakaori, Fumitake
    Konishi, Sadanori
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (07) : 1596 - 1607
  • [5] Robust variable selection and distributed inference using τ-based estimators for large-scale data
    Mozafari-Majd, Emadaldin
    Koivunen, Visa
    [J]. 28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 2453 - 2457
  • [6] Sparse Robust Dynamic Feature Extraction using Bayesian Inference
    Puli, Vamsi Krishna
    Chiplunkar, Ranjith
    Huang, Biao
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (06) : 6201 - 6209
  • [7] Robust spatial extent inference with a semiparametric bootstrap joint inference procedure
    Vandekar, Simon N.
    Satterthwaite, Theodore D.
    Xia, Cedric H.
    Adebimpe, Azeez
    Ruparel, Kosha
    Gur, Ruben C.
    Gur, Raquel E.
    Shinohara, Russell T.
    [J]. BIOMETRICS, 2019, 75 (04) : 1145 - 1155
  • [8] Robust Grouped Variable Selection Using Distributionally Robust Optimization
    Chen, Ruidi
    Paschalidis, Ioannis Ch
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 194 (03) : 1042 - 1071
  • [9] INFERENCE ON MEANS USING THE BOOTSTRAP
    BABU, GJ
    SINGH, K
    [J]. ANNALS OF STATISTICS, 1983, 11 (03): : 999 - 1003
  • [10] Robust Grouped Variable Selection Using Distributionally Robust Optimization
    Ruidi Chen
    Ioannis Ch. Paschalidis
    [J]. Journal of Optimization Theory and Applications, 2022, 194 : 1042 - 1071