Machine learning approaches can establish the complex and non-linear relationship among input and response variables for the seismic damage assessment of structures. However, lack of explainability of complex machine learning models prevents their use in such assessment. This paper uses extensive experimental databases to suggest random forest machine learning models for failure mode predictions of reinforced concrete columns and shear walls, employs the recently developed SHapley Additive exPlanations approach to rank input variables for identification of failure modes, and explains why the machine learning model predicts a specific failure mode for a given sample or experiment. A random forest model established provides an accuracy of 84% and 86% for unknown data of columns and shear walls, respectively. The geometric variables and reinforcement indices are critical parameters that influence failure modes. The study also reveals that existing strategies of failure mode identification based solely on geometric features are not enough to properly identify failure modes.
机构:
Van Lang Univ, Inst Computat Sci & Artificial Intelligence, Lab Computat Mech, Ho Chi Minh City, Vietnam
Van Lang Univ, Fac Mech Elect & Comp Engn, Sch Technol, Ho Chi Minh City, VietnamVan Lang Univ, Inst Computat Sci & Artificial Intelligence, Lab Computat Mech, Ho Chi Minh City, Vietnam
Ben Seghier, Mohamed El Amine
Mohamed, Osama Ahmed
论文数: 0引用数: 0
h-index: 0
机构:
Abu Dhabi Univ, Coll Engn, Abu Dhabi, U Arab EmiratesVan Lang Univ, Inst Computat Sci & Artificial Intelligence, Lab Computat Mech, Ho Chi Minh City, Vietnam
Mohamed, Osama Ahmed
Ouaer, Hocine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mhamed Bougara Boumerdes, Fac Hydrocarbons & Chem, Boumerdes, AlgeriaVan Lang Univ, Inst Computat Sci & Artificial Intelligence, Lab Computat Mech, Ho Chi Minh City, Vietnam
机构:
North China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Peoples R ChinaNorth China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Peoples R China
Zheng, Guozhong
Zhang, Yuqin
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Peoples R ChinaNorth China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Peoples R China
Zhang, Yuqin
Yue, Xuhui
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Peoples R ChinaNorth China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Peoples R China
Yue, Xuhui
Li, Kang
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Peoples R ChinaNorth China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Peoples R China
机构:
COMSATS Univ Islamabad, Dept Civil Engn, Abbottabad 22060, PakistanKing Faisal Univ, Coll Engn, Dept Civil & Environm Engn, Al Hasa 31982, Saudi Arabia
Ahmad, Waqas
Khan, Kaffayatullah
论文数: 0引用数: 0
h-index: 0
机构:
King Faisal Univ, Coll Engn, Dept Civil & Environm Engn, Al Hasa 31982, Saudi ArabiaKing Faisal Univ, Coll Engn, Dept Civil & Environm Engn, Al Hasa 31982, Saudi Arabia
Khan, Kaffayatullah
Nazar, Sohaib
论文数: 0引用数: 0
h-index: 0
机构:
COMSATS Univ Islamabad, Dept Civil Engn, Abbottabad 22060, PakistanKing Faisal Univ, Coll Engn, Dept Civil & Environm Engn, Al Hasa 31982, Saudi Arabia
Nazar, Sohaib
Abu Arab, Abdullah Mohammad
论文数: 0引用数: 0
h-index: 0
机构:
King Faisal Univ, Coll Engn, Dept Civil & Environm Engn, Al Hasa 31982, Saudi ArabiaKing Faisal Univ, Coll Engn, Dept Civil & Environm Engn, Al Hasa 31982, Saudi Arabia
Abu Arab, Abdullah Mohammad
Deifalla, Ahmed Farouk
论文数: 0引用数: 0
h-index: 0
机构:
Future Univ Egypt, Dept Struct Engn & Construct Management, New Cairo City 11835, EgyptKing Faisal Univ, Coll Engn, Dept Civil & Environm Engn, Al Hasa 31982, Saudi Arabia