Phase transitions in the two-dimensional Anisotropic Biquadratic Heisenberg Model

被引:13
|
作者
Moura, A. R. [1 ]
Pires, A. S. T. [2 ]
Pereira, A. R. [3 ]
机构
[1] Univ Fed Uberlandia, Uberlandia, MG, Brazil
[2] Univ Fed Minas Gerais, Belo Horizonte, MG, Brazil
[3] Univ Fed Vicosa, Vicosa, MG, Brazil
关键词
Anisotropic Biquadratic Heisenberg Model; Phase transition; Schwinger boson; SCHA; MEAN-FIELD-THEORY; XY MODEL; SPIN; PLANE;
D O I
10.1016/j.jmmm.2014.01.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we study the influence of the single-ion anisotropy in the two-dimensional biquadratic Heisenberg model (ABHM) on the square lattice at zero and finite low temperatures. It is common to represent the bilinear and biquadratic terms by J(1) = J cos phi and J(2) = J sin phi, respectively, and the many phases present in the model as a function of phi are well documented. However we have adopted a constant value for the bilinear constant (J(1) = 1) and small values of the biquadratic term (vertical bar J(2)vertical bar < J(1)). Specially, we have analyzed the quantum phase transition due to the single-ion anisotropic constant D. For values below a critical anisotropic constant D-c the energy spectrum is gapless and at low finite temperatures the order parameter correlation has an algebraic decay (quasi-long-range order). Moreover, in D < D-c phase there is a transition temperature where the quasi-long-range order (algebraic decay) is lost and the decay becomes exponential, similar to the Berezinski-Kosterlitz-Thouless (BKT) transition. For D > D-c, the excited states are gapped and there is no spin long-range order (LRO) even at zero temperature. Using Schwinger bosonic representation and Self-Consistent Harmonic Approximation (SCHA), we have studied the quantum and thermal phase transitions as a function of the bilinear and biquadratic constants. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 50 条
  • [1] Influence of magnetoelastic coupling on the phase transitions in two-dimensional non-Heisenberg magnetics with biquadratic interaction
    Fridman, YA
    Klevets, PN
    Kozhemyako, OV
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 264 (2-3) : 111 - 120
  • [2] Phase transitions in the two-dimensional single-ion anisotropic Heisenberg model with long-range interactions
    Moura, A. R.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2014, 369 : 62 - 68
  • [3] PHASE TRANSITIONS FOR ANISOTROPIC HEISENBERG MODEL
    LEFF, HS
    [J]. PHYSICS LETTERS A, 1971, A 35 (03) : 137 - &
  • [4] Effect of the site dilution on spin transport in the two-dimensional biquadratic Heisenberg model
    Lima, L. S.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 405 : 332 - 336
  • [5] Phase transitions in anisotropic two-dimensional quantum antiferromagnets
    Roscilde, T
    Cuccoli, A
    Verrucchi, P
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2003, 236 (02): : 433 - 436
  • [6] Phase transitions in two-dimensional anisotropic quantum magnets
    A. Cuccoli
    T. Roscilde
    V. Tognetti
    R. Vaia
    P. Verrucchi
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 20 (1): : 55 - 64
  • [7] Phase transitions in two-dimensional anisotropic quantum magnets
    Cuccoli, A
    Roscilde, T
    Tognetti, V
    Vaia, R
    Verrucchi, P
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2001, 20 (01): : 55 - 64
  • [8] VORTICES IN THE CLASSICAL TWO-DIMENSIONAL ANISOTROPIC HEISENBERG-MODEL
    GOUVEA, ME
    WYSIN, GM
    BISHOP, AR
    MERTENS, FG
    [J]. PHYSICAL REVIEW B, 1989, 39 (16): : 11840 - 11849
  • [9] Monte Carlo studies on phase transitions of the two-dimensional S=1 Ising model with biquadratic interaction
    Aoyama, K
    Chen, W
    Tanaka, M
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (01) : 272 - 273
  • [10] Quantum correlation and phase transitions in a two-dimensional doubly decorated Ising-Heisenberg model
    Sun, Z-Y.
    Li, L.
    Li, N.
    Yao, K-L.
    Liu, J.
    Luo, B.
    Du, G-H.
    Li, H-N.
    [J]. EPL, 2011, 95 (03)