ON IRREDUCIBLE FACTORS OF POLYNOMIALS OVER COMPLETE FIELDS

被引:3
|
作者
Khanduja, Sudesh K. [1 ]
Kumar, Sanjeev [2 ]
机构
[1] Indian Inst Sci Educ & Res IISER Mohali, Sas Nagar 140306, Punjab, India
[2] Panjab Univ, Dept Math, Chandigarh 160014, India
关键词
Valued fields; non-Archimedean valued fields; irreducible polynomials; EXTENSIONS; THEOREM;
D O I
10.1142/S0219498812501253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (K, v) be a complete rank-1 valued field. In this paper, we extend classical Hensel's Lemma to residually transcendental prolongations of v to a simple transcendental extension K(x) and apply it to prove a generalization of Dedekind's theorem regarding splitting of primes in algebraic number fields. We also deduce an irreducibility criterion for polynomials over rank-1 valued fields which extends already known generalizations of Schonemann Irreducibility Criterion for such fields. A refinement of Generalized Akira criterion proved in Khanduja and Khassa [Manuscripta Math. 134(1-2) (2010) 215-224] is also obtained as a corollary of the main result.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] IRREDUCIBLE FACTORS OF PSI-POLYNOMIALS OVER FINITE-FIELDS
    SCHOENWAELDER, U
    MANUSCRIPTA MATHEMATICA, 1988, 62 (02) : 187 - 203
  • [2] CONSTRUCTING IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS
    Ling, San
    Ozdemir, Enver
    Xing, Chaoping
    MATHEMATICS OF COMPUTATION, 2012, 81 (279) : 1663 - 1668
  • [3] Counting irreducible polynomials over finite fields
    Qichun Wang
    Haibin Kan
    Czechoslovak Mathematical Journal, 2010, 60 : 881 - 886
  • [4] IRREDUCIBLE POLYNOMIALS OVER FINITE-FIELDS
    VONZURGATHEN, J
    LECTURE NOTES IN COMPUTER SCIENCE, 1986, 241 : 252 - 262
  • [5] Irreducible compositions of polynomials over finite fields
    Kyuregyan, Melsik K.
    Kyureghyan, Gohar M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2011, 61 (03) : 301 - 314
  • [6] Twin irreducible polynomials over finite fields
    Effinger, GW
    Hicks, KH
    Mullen, GL
    FINITE FIELDS WITH APPLICATIONS TO CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, 2002, : 94 - 111
  • [7] COUNTING IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS
    Wang, Qichun
    Kan, Haibin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (03) : 881 - 886
  • [8] Construction of irreducible polynomials over finite fields
    Sharma, P. L.
    Ashima
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (07)
  • [9] Construction of Irreducible Polynomials over Finite Fields
    Abrahamyan, Sergey
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2010, 6244 : 1 - 3
  • [10] Generators and irreducible polynomials over finite fields
    Wan, DQ
    MATHEMATICS OF COMPUTATION, 1997, 66 (219) : 1195 - 1212