The metric dimension of Cartesian products of graphs

被引:0
|
作者
Peters-Fransen, J [1 ]
Oellermannt, OR [1 ]
机构
[1] Univ Winnipeg, Winnipeg, MB R3B 2E9, Canada
关键词
metric dimension; Cartesian products of graphs;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A vertex x in a graph G is said to resolve a pair u, v of vertices of G if the distance from u to x does not equal the distance from v to x. A set S of vertices of G is a resolving set for G if every pair of vertices of G is resolved by some vertex of S. The smallest cardinality of a resolving set for G, denoted by dim(G), is called the metric dimension for G. Bounds on the metric dimension of the Cartesian product of cycles and graphs are established and exact values are given when both graphs are cycles.
引用
收藏
页码:33 / 41
页数:9
相关论文
共 50 条
  • [1] On the metric dimension of cartesian products of graphs
    Caceres, Jose
    Hernando, Carmen
    Mora, Merce
    Pelayo, Ignacio M.
    Puertas, Maria L.
    Seara, Carlos
    Wood, David R.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) : 423 - 441
  • [2] On the strong metric dimension of Cartesian and direct products of graphs
    Rodriguez-Velazquez, Juan A.
    Yero, Ismael G.
    Kuziak, Dorota
    Oellermann, Ortrud R.
    [J]. DISCRETE MATHEMATICS, 2014, 335 : 8 - 19
  • [3] Cartesian products of graphs and metric spaces
    Avgustinovich, S
    Fon-der-Flaass, D
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (07) : 847 - 851
  • [4] On the Strong Metric Dimension of Cartesian Sum Graphs
    Kuziak, Dorota
    Yero, Ismael G.
    Rodriguez-Velazquez, Juan A.
    [J]. FUNDAMENTA INFORMATICAE, 2015, 141 (01) : 57 - 69
  • [5] HAUSDORFF DIMENSION OF CARTESIAN PRODUCTS OF METRIC SPACES
    WEGMANN, H
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1971, 246 : 46 - &
  • [6] On the strong metric dimension of the strong products of graphs
    Kuziak, Dorota
    Yero, Ismael G.
    Rodriguez-Velazquez, Juan A.
    [J]. OPEN MATHEMATICS, 2015, 13 (01): : 64 - 74
  • [7] Cartesian products of graphs as subgraphs of de Bruijn graphs of dimension at least three
    Andreae, T
    Hintz, M
    Nolle, M
    Schreiber, G
    Schuster, GW
    Seng, H
    [J]. DISCRETE APPLIED MATHEMATICS, 1997, 79 (1-3) : 3 - 34
  • [8] The dimension of cartesian products
    Hurewicz, W
    [J]. ANNALS OF MATHEMATICS, 1935, 36 : 194 - 197
  • [9] On the metric dimension of Cartesian powers of a graph
    Jiang, Zilin
    Polyanskii, Nikita
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 165 : 1 - 14
  • [10] Metric dimension and edge metric dimension of windmill graphs
    Singh, Pradeep
    Sharma, Sahil
    Sharma, Sunny Kumar
    Bhat, Vijay Kumar
    [J]. AIMS MATHEMATICS, 2021, 6 (09): : 9138 - 9153