Anisotropic spline approximation with non-uniform B-splines

被引:0
|
作者
Sissouno, N. [1 ]
机构
[1] Univ Passau, Fak Informat & Math, Passau, Germany
关键词
Non-uniform splines; approximation; quasi-interpolation; multivariate; domain;
D O I
10.1080/00036811.2016.1254774
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently the author and U. Reif introduced the concept of diversification of uniform tensor product B-splines. Based on this concept, we give a new constructive modification of non-uniform B-splines. The resulting spline spaces are perfectly fitted for the approximation of functions defined on domains Omega subset of R-2. We build a bounded quasi-interpolant and prove that for our spline spaces an anisotropic error estimate in the Lp-norm, 1 <= p <= infinity, is valid. In particular, we show that the constant of the error estimate does not depend on the shape of Omega or the knot grid.
引用
收藏
页码:135 / 144
页数:10
相关论文
共 50 条
  • [1] Non-uniform subdivision for B-splines of arbitrary degree
    Schaefer, S.
    Goldman, R.
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2009, 26 (01) : 75 - 81
  • [2] OFFSET APPROXIMATION OF UNIFORM B-SPLINES
    PHAM, B
    [J]. COMPUTER-AIDED DESIGN, 1988, 20 (08) : 471 - 474
  • [3] A Geometric Interpolation Algorithm by Non-uniform Cubic B-splines
    Li, Chunjing
    Wang, Anning
    Li, Kai
    Liu, Jinwu
    [J]. 2014 5TH INTERNATIONAL CONFERENCE ON DIGITAL HOME (ICDH), 2014, : 132 - 134
  • [4] Gear mesh excitation and non-uniform Rational B-Splines
    Beinstingel, A.
    Heider, M.
    Pinnekamp, B.
    Marburg, S.
    [J]. FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 2022, 86 (03): : 331 - 336
  • [5] On non-uniform rational B-splines surface neural networks
    Cheng, Ming-Yang
    Wu, Hung-Wen
    Su, Alvin Wen-Yu
    [J]. NEURAL PROCESSING LETTERS, 2008, 28 (01) : 1 - 15
  • [6] On Non-Uniform Algebraic-Hyperbolic (NUAH) B-Splines
    Jiang Qian and Yuehong Tang College of Science
    [J]. Numerical Mathematics(Theory,Methods and Applications), 2006, (04) : 320 - 335
  • [7] Efficient learning of non-uniform B-splines for modelling and control
    Zhang, JW
    Knoll, A
    Renners, I
    [J]. COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION - EVOLUTIONARY COMPUTATION & FUZZY LOGIC FOR INTELLIGENT CONTROL, KNOWLEDGE ACQUISITION & INFORMATION RETRIEVAL, 1999, 55 : 282 - 287
  • [8] Single-knot wavelets for non-uniform B-splines
    Bertram, M
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2005, 22 (09) : 849 - 864
  • [9] On Non-Uniform Rational B-Splines Surface Neural Networks
    Ming-Yang Cheng
    Hung-Wen Wu
    Alvin Wen-Yu Su
    [J]. Neural Processing Letters, 2008, 28 : 1 - 15
  • [10] Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement
    Lyche, Tom
    Manni, Carla
    Speleers, Hendrik
    [J]. SPLINES AND PDES: FROM APPROXIMATION THEORY TO NUMERICAL LINEAR ALGEBRA, 2018, 2219 : 1 - 76