Second-Order Logic and Set Theory

被引:2
|
作者
Vaananen, Jouko [1 ,2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[2] Univ Amsterdam, Inst Log Language & Computat, Amsterdam, Netherlands
来源
PHILOSOPHY COMPASS | 2015年 / 10卷 / 07期
关键词
FOUNDATIONS;
D O I
10.1111/phc3.12229
中图分类号
B [哲学、宗教];
学科分类号
01 ; 0101 ;
摘要
Both second-order logic and set theory can be used as a foundation for mathematics, that is, as a formal language in which propositions of mathematics can be expressed and proved. We take it upon ourselves in this paper to compare the two approaches, second-order logic on one hand and set theory on the other hand, evaluating their merits and weaknesses. We argue that we should think of first-order set theory as a very high-order logic.
引用
收藏
页码:463 / 478
页数:16
相关论文
共 50 条
  • [1] Modal Deduction in Second-Order Logic and Set Theory - II
    Van Benthem J.
    D'Agostino G.
    Montanari A.
    Policriti A.
    [J]. Studia Logica, 1998, 60 (3) : 387 - 420
  • [2] Second-order Logic and the Power Set
    Ethan Brauer
    [J]. Journal of Philosophical Logic, 2018, 47 : 123 - 142
  • [3] Second-order Logic and the Power Set
    Brauer, Ethan
    [J]. JOURNAL OF PHILOSOPHICAL LOGIC, 2018, 47 (01) : 123 - 142
  • [4] Modal deduction in second-order logic and set theory .1.
    VanBenthem, J
    DAgostino, G
    Montanari, A
    Policriti, R
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 1997, 7 (02) : 251 - 265
  • [5] SECOND ORDER LOGIC OR SET THEORY?
    Vaananen, Jouko
    [J]. BULLETIN OF SYMBOLIC LOGIC, 2012, 18 (01) : 91 - 121
  • [6] Models of second-order Zermelo set theory
    Uzquiano, G
    [J]. BULLETIN OF SYMBOLIC LOGIC, 1999, 5 (03) : 289 - 302
  • [7] Pure Second-Order Logic with Second-Order Identity
    Paseau, Alexander
    [J]. NOTRE DAME JOURNAL OF FORMAL LOGIC, 2010, 51 (03) : 351 - 360
  • [8] Team Logic and Second-Order Logic
    Kontinen, Juha
    Nurmi, Ville
    [J]. LOGIC, LANGUAGE, INFORMATION AND COMPUTATION, 2009, 5514 : 230 - 241
  • [9] Team Logic and Second-Order Logic
    Kontinen, Juha
    Nurmi, Ville
    [J]. FUNDAMENTA INFORMATICAE, 2011, 106 (2-4) : 259 - 272
  • [10] EXACT FORMULA FOR THE SECOND-ORDER TANGENT SET OF THE SECOND-ORDER CONE COMPLEMENTARITY SET
    Chen, Jein-Shan
    Ye, Jane J.
    Zhang, Jin
    Zhou, Jinchuan
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2986 - 3011