Application of Tikhonov regularization to super-resolution reconstruction of brain MRI images

被引:0
|
作者
Zhang, Xin [1 ]
Lam, Edmund Y. [1 ]
Wu, Ed X. [1 ]
Wong, Kenneth K. Y. [1 ]
机构
[1] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China
来源
MEDICAL IMAGING AND INFORMATICS | 2008年 / 4987卷
关键词
super-resolution reconstruction; MRI; Tikhonov regularization;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an image super-resolution method that enhances spatial resolution of MRI images in the slice-select direction. The algorithm employs Tikhonov regularization, using a standard model of imaging process and reformulating the reconstruction as a regularized minimization task. Our experimental result shows improvements in both signal-to-noise ratio and visual quality.
引用
收藏
页码:51 / 56
页数:6
相关论文
共 50 条
  • [1] Super-Resolution Reconstruction in MRI: Better Images Faster?
    Plenge, Esben
    Poot, Dirk H. J.
    Bernsen, Monique
    Kotek, Gyula
    Houston, Gavin
    Wielopolski, Piotr
    van der Weerd, Louise
    Niessen, Wiro J.
    Meijering, Erik
    MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
  • [2] Regularization for super-resolution image reconstruction
    Bannore, Vivek
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 2, PROCEEDINGS, 2006, 4252 : 36 - 46
  • [3] AFOD Regularization for Super-resolution Reconstruction
    Huang, Shuying
    Yang, Yong
    Wang, Guoyu
    INTERNATIONAL CONFERENCE ON ADVANCES IN ENGINEERING 2011, 2011, 24 : 1 - 5
  • [4] Super-resolution reconstruction based on regularization
    School of Electronic Engineering and Optoelectronic Techniques, Nanjing University of Science and Technology, Nanjing 210094, China
    不详
    不详
    Dianzi Yu Xinxi Xuebao, 2007, 7 (1713-1716):
  • [5] Arbitrary Scale Super-Resolution for Brain MRI Images
    Tan, Chuan
    Zhu, Jin
    Lio, Pietro
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2020, PT I, 2020, 583 : 165 - 176
  • [6] Image Restoration Techniques in Super-Resolution Reconstruction of MRI images
    Alsayem, Hisham A.
    Kadah, Yasser M.
    2016 33RD NATIONAL RADIO SCIENCE CONFERENCE (NRSC), 2016, : 188 - 194
  • [7] A GROUPWISE SUPER-RESOLUTION APPROACH: APPLICATION TO BRAIN MRI
    Rousseau, F.
    Kim, K.
    Studholme, C.
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 860 - 863
  • [8] MRI Super-Resolution with Two Regularization Parameters
    Ni Hao
    Ruan Ruolin
    Liu Fanghua
    Wu Aixia
    2016 3RD INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2016, : 901 - 905
  • [9] Parametric regularization loss in super-resolution reconstruction
    Viriyavisuthisakul, Supatta
    Kaothanthong, Natsuda
    Sanguansat, Parinya
    Le Nguyen, Minh
    Haruechaiyasak, Choochart
    MACHINE VISION AND APPLICATIONS, 2022, 33 (05)
  • [10] Parametric regularization loss in super-resolution reconstruction
    Supatta Viriyavisuthisakul
    Natsuda Kaothanthong
    Parinya Sanguansat
    Minh Le Nguyen
    Choochart Haruechaiyasak
    Machine Vision and Applications, 2022, 33