Nature-Inspired Multiobjective Cancer Subtype Diagnosis
被引:7
|
作者:
Wang, Yunhe
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Informat Sci & Technol, Changchun 130117, Jilin, Peoples R ChinaNortheast Normal Univ, Sch Informat Sci & Technol, Changchun 130117, Jilin, Peoples R China
Wang, Yunhe
[1
]
Liu, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Phys Educ, Changchun 130117, Jilin, Peoples R ChinaNortheast Normal Univ, Sch Informat Sci & Technol, Changchun 130117, Jilin, Peoples R China
Liu, Bo
[2
]
Ma, Zhiqiang
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Informat Sci & Technol, Changchun 130117, Jilin, Peoples R ChinaNortheast Normal Univ, Sch Informat Sci & Technol, Changchun 130117, Jilin, Peoples R China
Ma, Zhiqiang
[1
]
Wong, Ka-Chun
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R ChinaNortheast Normal Univ, Sch Informat Sci & Technol, Changchun 130117, Jilin, Peoples R China
Wong, Ka-Chun
[3
]
Li, Xiangtao
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Informat Sci & Technol, Changchun 130117, Jilin, Peoples R ChinaNortheast Normal Univ, Sch Informat Sci & Technol, Changchun 130117, Jilin, Peoples R China
Li, Xiangtao
[1
]
机构:
[1] Northeast Normal Univ, Sch Informat Sci & Technol, Changchun 130117, Jilin, Peoples R China
[2] Northeast Normal Univ, Sch Phys Educ, Changchun 130117, Jilin, Peoples R China
[3] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
Cancer gene expression data is of great importance in cancer subtype diagnosis and drug discovery. Many computational methods have been proposed to classify subtypes using those data. However, most of the previous computational methods suffer from poor interpretability, experimental noises, and low diagnostic quality. To address those problems, multiobjective ensemble cuckoo search based on decomposition (MOECSA) is proposed to optimize those four objectives simultaneously including the number of features, the accuracy, and two entropy-based measures: the relevance and the redundancy, classifying the cancer gene expression data with high predictive power for different cardinality levels under multiple objectives. A novel binary encoding is proposed to choose gene subsets from the cancer gene expression data for calculating four objective functions. Furthermore, an effective ensemble mechanism blended in the cuckoo search algorithm framework is applied to balance the convergence speed and population diversity in MOECSA. To demonstrate the effectiveness and efficiency of the proposed algorithm, experiments on thirty-five benchmark cancer gene expression datasets, four independent disease datasets, and one sequencing-based dataset are carried out to compare MOECSA with the six state-of-the-art multiobjective evolutionary algorithms and seven traditional classification algorithms. The experimental results in different perspectives demonstrate that MOECSA has better diagnosis performance than others at multiple levels.
机构:
Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Dalian Univ, Med Coll, Dalian, Peoples R China
Key Lab Biophys Univ Liaoning Prov, Dalian, Peoples R ChinaHarvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Wang, Yunhua
Zheng, Guoxia
论文数: 0引用数: 0
h-index: 0
机构:
Key Lab Biophys Univ Liaoning Prov, Dalian, Peoples R China
Dalian Univ, Environm & Chem Engn Inst, Dalian, Peoples R ChinaHarvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Zheng, Guoxia
Jiang, Nan
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, West China Sch Basic Med Sci & Forens Med, Chengdu, Peoples R China
Jinfeng Lab, Chongqing, Peoples R ChinaHarvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Jiang, Nan
Ying, Guoliang
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, West China Sch Basic Med Sci & Forens Med, Chengdu, Peoples R China
Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Engn Med, Cambridge, MA USAHarvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Ying, Guoliang
Li, Yiwei
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Dept Biomed Engn, Wuhan, Peoples R ChinaHarvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Li, Yiwei
Cai, Xiaolu
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Dept Biomed Engn, Wuhan, Peoples R ChinaHarvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Cai, Xiaolu
Meng, Jiashen
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan, Peoples R China
MIT, Dept Mech Engn, Cambridge, MA USAHarvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Meng, Jiashen
Mai, Liqiang
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan, Peoples R ChinaHarvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Mai, Liqiang
Guo, Ming
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Mech Engn, Cambridge, MA USAHarvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Guo, Ming
Zhang, Yu Shrike
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Engn Med, Cambridge, MA USAHarvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
Zhang, Yu Shrike
Zhang, Xingcai
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USAHarvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA