Examples of simply-connected Liouville manifolds with positive spectrum

被引:6
|
作者
Benjamini, I
Cao, JG
机构
[1] WEIZMANN INST SCI,DEPT MATH,IL-76100 REHOVOT,ISRAEL
[2] CORNELL UNIV,DEPT MATH,ITHACA,NY 14853
基金
美国国家科学基金会;
关键词
positive spectrum; Liouville manifolds; bounded geometry; bounded harmonic functions; Brownian motion;
D O I
10.1016/0926-2245(96)00005-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For each n greater than or equal to 3, we present a family of Riemannian metrics g on R(n) such that each Riemannian manifold M(n) = (R(n), g) has positive bottom of the spectrum of Laplacian lambda(1)(M(n)) > 0 and bounded geometry \K\ less than or equal to C but M(n) admits no non-constant bounded harmonic functions. These Riemannian manifolds mentioned above give a negative answer to a problem addressed by Schoen-Yau [18] in dimension n greater than or equal to 3.
引用
收藏
页码:31 / 50
页数:20
相关论文
共 50 条