Extinction Times of Epidemic Outbreaks in Networks

被引:14
|
作者
Holme, Petter [1 ,2 ,3 ]
机构
[1] Sungkyunkwan Univ, Dept Energy Sci, Suwon, South Korea
[2] Umea Univ, Dept Phys, IceLab, Umea, Sweden
[3] Stockholm Univ, Dept Sociol, S-10691 Stockholm, Sweden
来源
PLOS ONE | 2013年 / 8卷 / 12期
基金
新加坡国家研究基金会;
关键词
D O I
10.1371/journal.pone.0084429
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the Susceptible-Infectious-Recovered (SIR) model of disease spreading, the time to extinction of the epidemics happens at an intermediate value of the per-contact transmission probability. Too contagious infections burn out fast in the population. Infections that are not contagious enough die out before they spread to a large fraction of people. We characterize how the maximal extinction time in SIR simulations on networks depend on the network structure. For example we find that the average distances in isolated components, weighted by the component size, is a good predictor of the maximal time to extinction. Furthermore, the transmission probability giving the longest outbreaks is larger than, but otherwise seemingly independent of, the epidemic threshold.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Epidemic outbreaks on networks with effective contacts
    Li, Kezan
    Small, Michael
    Zhang, Haifeng
    Fu, Xinchu
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) : 1017 - 1025
  • [2] Epidemic outbreaks in complex heterogeneous networks
    Moreno, Y
    Pastor-Satorras, R
    Vespignani, A
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2002, 26 (04): : 521 - 529
  • [3] Epidemic outbreaks in complex heterogeneous networks
    Y. Moreno
    R. Pastor-Satorras
    A. Vespignani
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 26 : 521 - 529
  • [4] Epidemic Extinction and Control in Heterogeneous Networks
    Hindes, Jason
    Schwartz, Ira B.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (02)
  • [5] Epidemic extinction paths in complex networks
    Hindes, Jason
    Schwartz, Ira B.
    [J]. PHYSICAL REVIEW E, 2017, 95 (05) : 052317
  • [6] Taming epidemic outbreaks in mobile adhoc networks
    Hoque, E.
    Potharaju, R.
    Nita-Rotaru, C.
    Sarkar, S.
    Venkatesh, S. S.
    [J]. AD HOC NETWORKS, 2015, 24 : 57 - 72
  • [7] Epidemic outbreaks with adaptive prevention on complex networks
    Silva, Diogo H.
    Anteneodo, Celia
    Ferreira, Silvio C.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 116
  • [8] Extinction times in the subcritical stochastic SIS logistic epidemic
    Luczak, Malwina
    Brightwell, Graham
    House, Thomas
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 77 (02) : 455 - 493
  • [9] Extinction times in the subcritical stochastic SIS logistic epidemic
    Graham Brightwell
    Thomas House
    Malwina Luczak
    [J]. Journal of Mathematical Biology, 2018, 77 : 455 - 493
  • [10] Identifying epidemic threshold by temporal profile of outbreaks on networks
    Xu, Yizhan
    Tang, Ming
    Liu, Ying
    Zou, Yong
    Liu, Zonghua
    [J]. CHAOS, 2019, 29 (10)