Completely inapproximable monotone and antimonotone parameterized problems

被引:14
|
作者
Marx, Daniel [1 ]
机构
[1] Hungarian Acad Sci MTA SZTAKI, Comp & Automat Res Inst, Budapest, Hungary
基金
欧洲研究理事会;
关键词
Inapproximability; Fixed-parameter tractability; Circuits; Circuit satisfiability; APPROXIMATION; APPROXIMABILITY;
D O I
10.1016/j.jcss.2012.09.001
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We prove that weighted circuit satisfiability for monotone or antimonotone circuits has no fixed-parameter tractable approximation algorithm with any approximation ratio function rho, unless FPT not equal W[1]. In particular, not having such an fpt-approximation algorithm implies that these problems have no polynomial-time approximation algorithms with ratio rho(OPT) for any nontrivial function rho. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:144 / 151
页数:8
相关论文
共 50 条
  • [1] Completely inapproximable monotone and antimonotone parameterized problems
    Marx, Daniel
    25TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY - CCC 2010, 2010, : 181 - 187
  • [2] On the parameterized complexity of monotone and antimonotone weighted circuit satisfiability
    Kanj, Iyad
    Thilikos, Dimitrios M.
    Xia, Ge
    INFORMATION AND COMPUTATION, 2017, 257 : 139 - 156
  • [3] On Slicewise Monotone Parameterized Problems and Optimal Proof Systems for TAUT
    Chen, Yijia
    Flurn, Joerg
    COMPUTER SCIENCE LOGIC, 2010, 6247 : 200 - +
  • [4] Some Problems Related to Completely Monotone Positive Definite Functions
    Zastavnyi, V. P.
    MATHEMATICAL NOTES, 2019, 106 (1-2) : 212 - 228
  • [5] Some Problems Related to Completely Monotone Positive Definite Functions
    V. P. Zastavnyi
    Mathematical Notes, 2019, 106 : 212 - 228
  • [6] PARAMETERIZED DOUGLAS-RACHFORD DYNAMICAL SYSTEM FOR MONOTONE INCLUSION PROBLEMS
    Gautam P.
    Som K.
    Vetrivel V.
    Applied Set-Valued Analysis and Optimization, 2023, 5 (01): : 19 - 29
  • [7] Cyclically antimonotone vector equilibrium problems
    Miholca, Mihaela
    OPTIMIZATION, 2018, 67 (12) : 2191 - 2204
  • [8] Ekeland's principle for cyclically antimonotone equilibrium problems
    Castellani, Marco
    Giuli, Massimiliano
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 32 : 213 - 228
  • [9] APPROXIMATION OF AND BY COMPLETELY MONOTONE FUNCTIONS
    Loy, R. J.
    Anderssen, R. S.
    ANZIAM JOURNAL, 2019, 61 (04): : 416 - 430
  • [10] NOTE ON COMPLETELY MONOTONE DENSITIES
    STEUTEL, FW
    ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (03): : 1130 - &