Systemically administered AAV9-sTRAIL combats invasive glioblastoma in a patient-derived orthotopic xenograft model

被引:20
|
作者
Crommentuijn, Matheus H. W. [1 ,2 ,3 ]
Kantar, Rami [1 ,2 ]
Noske, David P. [3 ]
Vandertop, W. Peter [3 ]
Badr, Christian E. [1 ,2 ]
Wurdinger, Thomas [2 ,3 ]
Maguire, Casey A. [1 ,2 ]
Tannous, Bakhos A. [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Ctr Neurosci, Dept Neurol, Expt Therapeut & Mol Imaging Lab, Boston, MA 02114 USA
[2] Harvard Med Sch, Program Neurosci, Boston, MA 02114 USA
[3] Vrije Univ Amsterdam Med Ctr, Canc Ctr Amsterdam, Neuro oncol Res Grp, Dept Neurosurg, Amsterdam, Netherlands
来源
基金
美国国家卫生研究院;
关键词
APOPTOSIS-INDUCING LIGAND; HEPATOCELLULAR-CARCINOMA GROWTH; ADENOASSOCIATED VIRUS; GENE-THERAPY; PROLONGS SURVIVAL; GLIOMA-CELLS; FACTOR-IX; TRAIL; EXPRESSION; BRAIN;
D O I
10.1038/mto.2016.17
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Adeno-associated virus (AAV) vectors expressing tumoricidal genes injected directly into brain tumors have shown some promise, however, invasive tumor cells are relatively unaffected. Systemic injection of AAV9 vectors provides widespread delivery to the brain and potentially the tumor/microenvironment. Here we assessed AAV9 for potential glioblastoma therapy using two different promoters driving the expression of the secreted anti-cancer agent sTRAIL as a transgene model; the ubiquitously active chicken beta-actin (CBA) promoter and the neuron-specific enolase (NSE) promoter to restrict expression in brain. Intravenous injection of AAV9 vectors encoding a bioluminescent reporter showed similar distribution patterns, although the NSE promoter yielded 100-fold lower expression in the abdomen (liver), with the brain-to-liver expression ratio remaining the same. The main cell types targeted by the CBA promoter were astrocytes, neurons and endothelial cells, while expression by NSE promoter mostly occurred in neurons. Intravenous administration of either AAV9-CBA-sTRAIL or AAV9-NSE-sTRAIL vectors to mice bearing intracranial patient-derived glioblastoma xenografts led to a slower tumor growth and significantly increased survival, with the CBA promoter having higher efficacy. To our knowledge, this is the first report showing the potential of systemic injection of AAV9 vector encoding a therapeutic gene for the treatment of brain tumors.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Intracranial AAV-sTRAIL combined with lanatoside C prolongs survival in an orthotopic xenograft mouse model of invasive glioblastoma
    Crommentuijn, Matheus H. W.
    Maguire, Casey A.
    Niers, Johanna M.
    Vanclertop, W. Peter
    Badr, Christian E.
    Wurdinger, Thomas
    Tannous, Bakhos A.
    [J]. MOLECULAR ONCOLOGY, 2016, 10 (04): : 625 - 634
  • [2] Protocol A Patient-Derived Xenograft Model of Glioblastoma
    Chokshi, Chirayu R.
    Savage, Neil
    Venugopal, Chitra
    Singh, Sheila K.
    [J]. STAR PROTOCOLS, 2020, 1 (03):
  • [3] DEVELOPMENT OF A PATIENT-DERIVED ORTHOTOPIC XENOGRAFT GLIOBLASTOMA MODEL PHENOTYPICALLY REPRESENTATIVE OF THE CLINICAL FEATURES
    Nagaraja, Tavarekere
    deCarvalho, Ana
    Griffith, Brent
    Brown, Stephen
    Divine, George
    Irtenkauf, Susan
    Knight, Robert
    Lee, Ian
    Panda, Swayamprava
    Cabral, Glauber
    Ewing, James
    [J]. NEURO-ONCOLOGY, 2019, 21 : 270 - 271
  • [4] Clinically relevant orthotopic xenograft models of patient-derived glioblastoma in zebrafish
    Ai, Xiaolin
    Ye, Zengpanpan
    Xiao, Chaoxin
    Zhong, Jian
    Lancman, Joseph J.
    Chen, Xuelan
    Pan, Xiangyu
    Yang, Yu
    Zhou, Lin
    Wang, Xiang
    Shi, Huashan
    Zhang, Dongmei
    Yao, Yuqin
    Cao, Dan
    Zhao, Chengjian
    [J]. DISEASE MODELS & MECHANISMS, 2022, 15 (04)
  • [5] Highly Invasive Fluorescent/Bioluminescent Patient-Derived Orthotopic Model of Glioblastoma in Mice
    Yuzhakova, Diana
    Kiseleva, Elena
    Shirmanova, Marina
    Shcheslavskiy, Vladislav
    Sachkova, Daria
    Snopova, Ludmila
    Bederina, Evgeniya
    Lukina, Maria
    Dudenkova, Varvara
    Yusubalieva, Gaukhar
    Belovezhets, Tatyana
    Matvienko, Daria
    Baklaushev, Vladimir
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12
  • [6] Establishment of a patient-derived orthotopic xenograft (PDOX) model of patient cervical cancer
    Hiroshima, Yukihiko
    Zhang, Yong
    Maawy, Ali
    Sato, Sho
    Murakami, Takashi
    Yamamoto, Mako
    Uehara, Fuminari
    Miwa, Shinji
    Yano, Shuya
    Momiyama, Masashi
    Chishima, Takashi
    Tanaka, Kuniya
    Maawy, Ali
    Endo, Itaru
    Hoffman, Robert M.
    [J]. CANCER RESEARCH, 2014, 74 (19)
  • [7] Facilitating tailored therapeutic strategies for glioblastoma through an orthotopic patient-derived xenograft platform
    Lee, Hye Won
    Lee, Kyoungmin
    Kim, Dong Geon
    Yang, HeeKyoung
    Nam, Do-Hyun
    [J]. HISTOLOGY AND HISTOPATHOLOGY, 2016, 31 (03) : 269 - 283
  • [8] DNA Methylation Patterns in an Ependymoma Patient-derived Orthotopic Xenograft Model
    Siddiq, Zainab
    Gilani, Ahmed
    [J]. JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2021, 80 (06): : 602 - 603
  • [9] A true orthotopic ovarian cancer patient-derived xenograft (PDX) model
    Cui, Hongmei
    He, Yingyan
    Krepler, Clemens
    Tanyi, Janos
    Morgan, Mark A.
    Burger, Robert A.
    Kim, Sarah
    Ko, Emily
    Ince, Tan
    Herlyn, Meenhard
    Simpkins, Fiona
    [J]. CANCER RESEARCH, 2015, 75
  • [10] AAV Mediated IFNβ Gene Therapy of Orthotopic Xenograft Mouse Model of Invasive Glioblastoma multiforme
    GuhaSarkar, Dwijit
    Neiswender, James
    Sena-Esteves, Miguel
    [J]. MOLECULAR THERAPY, 2013, 21 : S82 - S82