SPHERICAL FUNCTIONS ON SPHERICAL VARIETIES

被引:15
|
作者
Sakellaridis, Yiannis [1 ]
机构
[1] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
关键词
UNRAMIFIED PRINCIPAL SERIES; ADIC SYMMETRIC-SPACES; LOCAL-DENSITIES; DECOMPOSITION; PERIODS; FORMS;
D O I
10.1353/ajm.2013.0046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X = H\G be a homogeneous spherical variety for a split reductive group G over the integers o of a p-adic field k, and K = G(o) a hyperspecial maximal compact subgroup of G = G(k). We compute eigenfunctions ("spherical functions") on X = X(k) under the action of the unramified (or spherical) Hecke algebra of G, generalizing many classical results of "Casselman-Shalika" type. Under some additional assumptions on X we also prove a variant of the formula which involves a certain quotient of L-values, and we present several applications such as: (1) a statement on "good test vectors" in the multiplicity-free case (namely, that an H-invariant functional on an irreducible unramified representation pi is non-zero on pi(K)), (2) the unramified Plancherel formula for X, including a formula for the "Tamagawa measure" of X(o), and (3) a computation of the most continuous part of H-period integrals of principal Eisenstein series.
引用
收藏
页码:1291 / 1381
页数:91
相关论文
共 50 条
  • [1] SPHERICAL ROOTS OF SPHERICAL VARIETIES
    Knop, Friedrich
    [J]. ANNALES DE L INSTITUT FOURIER, 2014, 64 (06) : 2503 - 2526
  • [2] Spherical varieties and integral representations of L-functions
    Sakellaridis, Yiannis
    [J]. ALGEBRA & NUMBER THEORY, 2012, 6 (04) : 611 - 667
  • [3] ON THE GEOMETRY OF SPHERICAL VARIETIES
    NICOLAS PERRIN
    [J]. Transformation Groups, 2014, 19 : 171 - 223
  • [4] SPHERICAL VARIETIES - AN INTRODUCTION
    BRION, M
    [J]. TOPOLOGICAL METHODS IN ALGEBRAIC TRANSFORMATION GROUPS, 1989, 80 : 11 - 26
  • [5] Localization of spherical varieties
    Knop, Friedrich
    [J]. ALGEBRA & NUMBER THEORY, 2014, 8 (03) : 703 - 728
  • [6] ON THE GEOMETRY OF SPHERICAL VARIETIES
    BRION, M
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1991, 66 (02) : 237 - 262
  • [7] Type A spherical varieties
    Luna, D
    [J]. PUBLICATIONS MATHEMATIQUES, NO 94, 2001, (94): : 161 - 226
  • [8] ON THE GEOMETRY OF SPHERICAL VARIETIES
    Perrin, Nicolas
    [J]. TRANSFORMATION GROUPS, 2014, 19 (01) : 171 - 223
  • [9] Generating Functions for Spherical Harmonics and Spherical Monogenics
    P. Cerejeiras
    U. Kähler
    R. Lávička
    [J]. Advances in Applied Clifford Algebras, 2014, 24 : 995 - 1004
  • [10] Generating Functions for Spherical Harmonics and Spherical Monogenics
    Cerejeiras, P.
    Kaehler, U.
    Lavicka, R.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2014, 24 (04) : 995 - 1004