The rank of Abelian varieties over infinite Galois extensions

被引:4
|
作者
Rosen, M [1 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
[2] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
Abelian varieties; idempotent relations; Jacobian varieties; ranks;
D O I
10.1006/jnth.2001.2692
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
G, Frey and M. Jarden (1974, Proc, London Math. Soc, 28, 112 128) asked if every Abelian variety A defined over a number field k with dim A > 0 has infinite rank over the maximal Abelian extension k(ab) of k. We verify this for the Jacobians of cyclic covers of P-1, with no hypothesis on the Weierstrass points or on the base field, We also derive an infinite rank criterion by analyzing the ramification of division points of an Abelian variety. As an application, we show that any d-dimensional Abelian variety A over k with a degree n projective embedding over k has infinite rank over the compositum of all extensions of k of degree <n(4d+2). (C) 2001 Elsevier Science (USA).
引用
收藏
页码:182 / 196
页数:15
相关论文
共 50 条
  • [1] Ranks of abelian varieties over infinite extensions of the rationals
    Lozano-Robledo, Alvaro
    [J]. MANUSCRIPTA MATHEMATICA, 2008, 126 (03) : 393 - 407
  • [2] Ranks of abelian varieties over infinite extensions of the rationals
    Álvaro Lozano-Robledo
    [J]. manuscripta mathematica, 2008, 126 : 393 - 407
  • [3] Rank gain of Jacobian varieties over finite Galois extensions
    Im, Bo-Hae
    Wallace, Erik
    [J]. JOURNAL OF NUMBER THEORY, 2018, 184 : 68 - 84
  • [4] ABELIAN VARIETIES AND GALOIS EXTENSIONS OF HILBERTIAN FIELDS
    Thornhill, Christopher
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2013, 12 (02) : 237 - 247
  • [5] The growth of the rank of Abelian varieties upon extensions
    Pieter Bruin
    Filip Najman
    [J]. The Ramanujan Journal, 2016, 39 : 259 - 269
  • [6] The growth of the rank of Abelian varieties upon extensions
    Bruin, Pieter
    Najman, Filip
    [J]. RAMANUJAN JOURNAL, 2016, 39 (02): : 259 - 269
  • [7] Constructing abelian varieties from rank 2 Galois representations
    Krishnamoorthy, Raju
    Yang, Jinbang
    Zuo, Kang
    [J]. COMPOSITIO MATHEMATICA, 2024, 160 (04) : 709 - 731
  • [8] TORSION AND ENDOMORPHISMS OF ABELIAN-VARIETIES OVER INFINITE EXTENSIONS OF NUMBER-FIELDS
    ZARKHIN, YG
    [J]. MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 38 (03): : 647 - 657
  • [9] Galois sections for abelian varieties over number fields
    Ciperiani, Mirela
    Stix, Jakob
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2015, 27 (01): : 47 - 52
  • [10] On the rank of abelian varieties over function fields
    Amílcar Pacheco
    [J]. manuscripta mathematica, 2005, 118 : 361 - 381