Dual Encoding U-Net for Retinal Vessel Segmentation

被引:154
|
作者
Wang, Bo [1 ,2 ,3 ]
Qiu, Shuang [2 ,3 ]
He, Huiguang [1 ,2 ,3 ,4 ]
机构
[1] Univ Chinese Acad Sci, Sch Artif Intelligence, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Res Ctr Brain Inspired Intelligence, Inst Automat, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing 100190, Peoples R China
关键词
Retinal vessel segmentation; Spatial path; Context path; Attention mechanism;
D O I
10.1007/978-3-030-32239-7_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Retinal Vessel Segmentation is an essential step for the early diagnosis of eye-related diseases, such as diabetes and hypertension. Segmentation of blood vessels requires both sizeable receptive field and rich spatial information. In this paper, we propose a novel Dual Encoding U-Net (DEU-Net), which have two encoders: a spatial path with large kernel to preserve the spatial information and a context path with multiscale convolution block to capture more semantic information. On the top of the two paths, we introduce a feature fusion module to combine the different level of feature representation. Besides, we apply channel attention to select useful feature map in a skip connection. Furthermore, low-level and high-level prediction are combined in multiscale prediction module for a better accuracy. We evaluated this model on the digital retinal images for vessel extraction (DRIVE) dataset and the child heart and health study (CHASEDB1) dataset. Results show that the proposed DEU-Net model achieved the state-of-the-art retinal vessel segmentation accuracy on both datasets.
引用
收藏
页码:84 / 92
页数:9
相关论文
共 50 条
  • [1] Factorized U-net for Retinal Vessel Segmentation
    Gurrola-Ramos, Javier
    Dalmau, Oscar
    Alarcon, Teresa
    [J]. PATTERN RECOGNITION, MCPR 2022, 2022, 13264 : 181 - 190
  • [2] Extended U-net for Retinal Vessel Segmentation
    Boudegga, Henda
    Elloumi, Yaroub
    Kachouri, Rostom
    Ben Abdallah, Asma
    Bedoui, Mohamed Hedi
    [J]. ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2022, 2022, 1653 : 564 - 576
  • [3] RESIDUAL U-NET FOR RETINAL VESSEL SEGMENTATION
    Li, Di
    Dharmawan, Dhimas Arief
    Ng, Boon Poh
    Rahardja, Susanto
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1425 - 1429
  • [4] PYRAMID U-NET FOR RETINAL VESSEL SEGMENTATION
    Zhang, Jiawei
    Zhang, Yanchun
    Xu, Xiaowei
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1125 - 1129
  • [5] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    [J]. IEEE ACCESS, 2024, 12 : 534 - 551
  • [6] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    [J]. IEEE Access, 2024, 12 : 534 - 551
  • [7] An improved method for retinal vessel segmentation in U-Net
    Li, Chunyang
    Li, Zhigang
    Yu, Fusheng
    Liu, Weikang
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024,
  • [8] U-Net with Attention Mechanism for Retinal Vessel Segmentation
    Si, Ze
    Fu, Dongmei
    Li, Jiahao
    [J]. IMAGE AND GRAPHICS, ICIG 2019, PT II, 2019, 11902 : 668 - 677
  • [9] Feature pyramid U-Net for retinal vessel segmentation
    Liu, Yi-Peng
    Rui, Xue
    Li, Zhanqing
    Zeng, Dongxu
    Li, Jing
    Chen, Peng
    Liang, Ronghua
    [J]. IET IMAGE PROCESSING, 2021, 15 (08) : 1733 - 1744
  • [10] Retinal Vessel Segmentation with Differentiated U-Net Network
    Arpaci, Saadet Aytac
    Varli, Songul
    [J]. 2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,