Energy Efficient User Scheduling for Hybrid Split and Federated Learning in Wireless UAV Networks

被引:8
|
作者
Liu, Xiaolan [1 ]
Deng, Yansha [2 ]
Mahmoodi, Toktam [2 ]
机构
[1] Loughborough Univ, Loughborough, Leics, England
[2] Kings Coll London, London, England
基金
“创新英国”项目;
关键词
D O I
10.1109/ICC45855.2022.9882277
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The use of unmanned aerial vehicles (UAVs) as flying users provides various applications by exploiting machine learning (ML) algorithms. Recently, distributed learning algorithms, federated learning (FL) and split learning (SL), have been exploited to train ML models distributedly via sharing model parameters rather than large raw datasets in the conventional centralized learning algorithms. Considering the diversity of users with heterogeneous resources, computation capabilities, and data distributions, we propose a hybrid split and federated learning (HSFL) framework that allows users to select either split training (ST) or federated training (FT) method based on the characteristics of the users in wireless UAV networks. Due to unreliable wireless channels and the limited energy of the users, we further formulate a user scheduling and training method selection problem within HSFL framework as a Multiple-Choice Knapsack Problem (MCKP) and propose an energy-efficient user scheduling algorithm to select a subset of users in each round and schedule each user with either ST or FT method. The simulations demonstrate that our proposed HSFL framework consumes less energy while having the same good test accuracy performance compared to the currently distributed learning algorithms, and the proposed user scheduling algorithm achieves energy-efficient selection of ST or FT method under different distributions.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A Novel Hybrid Split and Federated Learning Architecture in Wireless UAV Networks
    Liu, Xiaolan
    Deng, Yansha
    Mahmoodi, Toktam
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022,
  • [2] User Scheduling in Federated Learning over Energy Harvesting Wireless Networks
    Hamdi, Rami
    Chen, Mingzhe
    Ben Said, Ahmed
    Qaraqe, Marwa
    Poor, H. Vincent
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [3] Energy-Efficient UAV-to-User Scheduling to Maximize Throughput in Wireless Networks
    Ahmed, Shakil
    Chowdhury, Mostafa Zaman
    Jang, Yeong Min
    IEEE ACCESS, 2020, 8 (08): : 21215 - 21225
  • [4] Deep Reinforcement Learning for Energy-Efficient Federated Learning in UAV-Enabled Wireless Powered Networks
    Quang Vinh Do
    Quoc-Viet Pham
    Hwang, Won-Joo
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (01) : 99 - 103
  • [5] Joint User Scheduling and Resource Allocation for Federated Learning over Wireless Networks
    Yin, Benshun
    Chen, Zhiyong
    Tao, Meixia
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [6] Energy Efficient Federated Learning Over Wireless Communication Networks
    Yang, Zhaohui
    Chen, Mingzhe
    Saad, Walid
    Hong, Choong Seon
    Shikh-Bahaei, Mohammad
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (03) : 1935 - 1949
  • [7] Scheduling Policies for Federated Learning in Wireless Networks
    Yang, Howard H.
    Liu, Zuozhu
    Quek, Tony Q. S.
    Poor, H. Vincent
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (01) : 317 - 333
  • [8] Energy-Efficient Federated Learning for Wireless Computing Power Networks
    Li, Zongjun
    Zhang, Haibin
    Wang, Qubeijian
    Sun, Wen
    Zhang, Yan
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [9] Communication Efficient Federated Learning With Energy Awareness Over Wireless Networks
    Jin, Richeng
    He, Xiaofan
    Dai, Huaiyu
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (07) : 5204 - 5219
  • [10] Federated Learning for Energy-Efficient Task Computing in Wireless Networks
    Wang, Sihua
    Chen, Mingzhe
    Saad, Walid
    Yin, Changchuan
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,