Neuroprotective effect of humanin on cerebral ischemia/reperfusion injury is mediated by a PI3K/Akt pathway

被引:127
|
作者
Xu, Xingshun
Chua, Chu Chang
Gao, Finping
Chua, Kao-Wei
Wang, Hong
Hamdy, Ronald C.
Chua, Balvin H. L. [1 ]
机构
[1] E Tennessee State Univ, James H Quillen Coll Med, Dept Pharmacol, Johnson City, TN 37614 USA
关键词
humanin; PI3K/Akt; OGD; cortical neuron; MCAO;
D O I
10.1016/j.brainres.2008.06.018
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Humanin (FIN) is an anti-apoptotic peptide that suppresses neuronal cell death induced by Alzheimer's disease, prion protein fragments, and serum deprivation. Recently, we demonstrated that Gly(14)-HN (HNG), a variant of HN in which the 14th amino acid serine is replaced with glycine, can decrease apoptotic neuronal death and reduce infarct volume in a focal cerebral ischemia/reperfusion mouse model. In this study, we postulate that the mechanism of HNG's neuroprotective effect is mediated by the PI3K/Akt pathway. Oxygen-glucose deprivation (OGD) was performed in cultured mouse primary cortical neurons for 60 min. The effect of HNG and PI3K/Akt inhibitors on OGD-induced cell death was examined at 24 h after reperfusion. HNG increased cell viability after OGD in primary cortical neurons, whereas the PI3K/Akt inhibitors wortmannin and Akti-1/2 attenuated the protective effect of HNG. HNG rapidly increased Akt phosphorylation, an effect that was inhibited by wortmannin and Akti-1/2. Mouse brains were injected intraventricularly with HNG before being subjected to middle cerebral artery occlusion (MCAO). LING treatment significantly elevated p-Akt levels after cerebral I/R injury and decreased infarct volume. The protective effect of HNG on infarct size was attenuated by wortmannin and Akti-1/2. Taken as a whole, these results suggest that PI3K/Akt activation mediates HNG's protective effect against hypoxia/ischemia reperfusion injury. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:12 / 18
页数:7
相关论文
共 50 条
  • [1] Neuroprotective effects of metformin on cerebral ischemia-reperfusion injury by regulating PI3K/Akt pathway
    Ruan, Cailian
    Guo, Hongtao
    Gao, Jiaqi
    Wang, Yiwei
    Liu, Zhiyong
    Yan, Jinyi
    Li, Xiaoji
    Lv, Haixia
    [J]. BRAIN AND BEHAVIOR, 2021, 11 (10):
  • [2] PI3K/Akt pathway contributes to neuroprotective effect of Tongxinluo against focal cerebral ischemia and reperfusion injury in rats
    Yu, Zhong-Hai
    Cai, Min
    Xiang, Jun
    Zhang, Zhen-Nian
    Zhang, Jing-Si
    Song, Xiao-Ling
    Zhang, Wen
    Bao, Jie
    Li, Wen-Wei
    Cai, Ding-Fang
    [J]. JOURNAL OF ETHNOPHARMACOLOGY, 2016, 181 : 8 - 19
  • [3] Neuroprotective capabilities of TSA against cerebral ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats
    Ma, Xiao-Hui
    Gao, Qiang
    Jia, Zhen
    Zhang, Ze-Wei
    [J]. INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2015, 125 (02) : 140 - 146
  • [4] Neuroprotective effects of alisol A 24-acetate on cerebral ischaemia–reperfusion injury are mediated by regulating the PI3K/AKT pathway
    Taotao Lu
    Huihong Li
    Yangjie Zhou
    Wei Wei
    Linlin Ding
    Zengtu Zhan
    Weilin Liu
    Jing Tao
    Xiehua Xue
    [J]. Journal of Neuroinflammation, 19
  • [5] Neuroprotective Effect of Danhong Injection on Cerebral Ischemia-Reperfusion Injury in Rats by Activation of the PI3K-Akt Pathway
    Feng, Chen
    Wan, Haofang
    Zhang, Yangyang
    Yu, Li
    Shao, Chongyu
    He, Yu
    Wan, Haitong
    Jin, Weifeng
    [J]. FRONTIERS IN PHARMACOLOGY, 2020, 11
  • [6] Pachymic acid protects against cerebral ischemia/reperfusion injury by the PI3K/Akt signaling pathway
    Yingqiao Pang
    Shaozhi Zhu
    Haitao Pei
    [J]. Metabolic Brain Disease, 2020, 35 : 673 - 680
  • [7] Pachymic acid protects against cerebral ischemia/reperfusion injury by the PI3K/Akt signaling pathway
    Pang, Yingqiao
    Zhu, Shaozhi
    Pei, Haitao
    [J]. METABOLIC BRAIN DISEASE, 2020, 35 (04) : 673 - 680
  • [8] Protective Effects of Propofol on Rats with Cerebral Ischemia–Reperfusion Injury Via the PI3K/Akt Pathway
    Yaru Chen
    Zhenzhou Li
    [J]. Journal of Molecular Neuroscience, 2021, 71 : 810 - 820
  • [9] Icariin protects against cerebral ischemia/reperfusion injury by activating the PI3K/Akt signaling pathway
    He, Jiaxuan
    Lv, Jianrui
    Li, Wei
    Li, Siyuan
    Zhang, Yong
    Wei, Haidong
    Pan, Weikang
    Gao, Ya
    [J]. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2017, 10 (02): : 2367 - 2373
  • [10] The protective effect of ligustrazine on rats with cerebral ischemia-reperfusion injury via activating PI3K/Akt pathway
    Ding, Y.
    Du, J.
    Cui, F.
    Chen, L.
    Li, K.
    [J]. HUMAN & EXPERIMENTAL TOXICOLOGY, 2019, 38 (10) : 1168 - 1177