A hierarchy of maximum entropy closures for Galerkin systems of incompressible flows

被引:6
|
作者
Noack, Bernd R. [1 ]
Niven, Robert K. [2 ]
机构
[1] Univ Poitiers, CNRS, ENSMA, Dept Fluides,Inst PPRIME,UPR 3346,CEAT, F-86036 Poitiers, France
[2] Univ New S Wales, Australian Def Force Acad, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
关键词
Nonlinear dynamic system; Ergodic measure; Jaynes maximum entropy principle; COHERENT STRUCTURES; INFORMATION-THEORY; MODELS; FLUID; REDUCTION; DYNAMICS;
D O I
10.1016/j.camwa.2013.02.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a maximum-entropy closure strategy for dissipative dynamical systems building on and generalizing earlier examples (Noack & Niven (2012) [11]). Focus is placed on Galerkin systems arising from a projection of the incompressible Navier-Stokes equation onto orthonormal expansion modes. The maximum-entropy closure is motivated by a simple analytical example and elaborated to a hierarchical framework with sufficient conditions for the existence of solutions. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1558 / 1574
页数:17
相关论文
共 50 条
  • [1] Maximum-entropy closure for a Galerkin model of an incompressible periodic wake
    Noack, Bernd R.
    Niven, Robert K.
    JOURNAL OF FLUID MECHANICS, 2012, 700 : 187 - 213
  • [2] Affordable robust moment closures for CFD based on the maximum-entropy hierarchy
    McDonald, James
    Torrilhon, Manuel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 251 : 500 - 523
  • [3] Turbulence of incompressible liquid flows near local equilibrium and the secondary entropy maximum principle
    Zhuravlev, V. M.
    TECHNICAL PHYSICS, 2010, 55 (05) : 654 - 665
  • [4] Turbulence of incompressible liquid flows near local equilibrium and the secondary entropy maximum principle
    V. M. Zhuravlev
    Technical Physics, 2010, 55 : 654 - 665
  • [5] Galerkin local maximum entropy method
    Dreier, Nils-Arne
    Engwer, Christian
    Hartmann, Dirk
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2018, 88 (02) : 100 - 115
  • [6] On the stability and convergence of discontinuous Galerkin schemes for incompressible flows
    Gazca-Orozco, Pablo Alexei
    Kaltenbach, Alex
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [7] A zonal Galerkin-free POD model for incompressible flows
    Bergmann, Michel
    Ferrero, Andrea
    Iollo, Angelo
    Lombardi, Edoardo
    Scardigli, Angela
    Telib, Haysam
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 352 : 301 - 325
  • [8] A SIMPLE based discontinuous Galerkin solver for steady incompressible flows
    Klein, Benedikt
    Kummer, Florian
    Oberlack, Martin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 237 : 235 - 250
  • [9] A Wavelet Based Adaptive Discontinuous Galerkin Method for Incompressible Flows
    Pinto, Brijesh
    Plata, Marta de la Llave
    Lamballais, Eric
    TURBULENCE AND INTERACTIONS (TI 2015), 2018, 135 : 207 - 215
  • [10] Discontinuous Galerkin Method for Incompressible Two-Phase Flows
    Gerstenberger, Janick
    Burbulla, Samuel
    Kroner, Dietmar
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 675 - 683