WEIGHTED HAMILTONIAN STATIONARY LAGRANGIAN SUBMANIFOLDS AND GENERALIZED LAGRANGIAN MEAN CURVATURE FLOWS IN TORIC ALMOST CALABI-YAU MANIFOLDS
被引:2
|
作者:
Yamamoto, Hikaru
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Fac Sci, Dept Math, Shinjuku Ku, Kagurazaka 1-3, Tokyo 1628601, JapanTokyo Univ Sci, Fac Sci, Dept Math, Shinjuku Ku, Kagurazaka 1-3, Tokyo 1628601, Japan
Yamamoto, Hikaru
[1
]
机构:
[1] Tokyo Univ Sci, Fac Sci, Dept Math, Shinjuku Ku, Kagurazaka 1-3, Tokyo 1628601, Japan
Lagrangian mean curvature flow;
special Lagrangian submanifold;
SELF-SIMILAR SOLUTIONS;
CONES;
D O I:
10.2748/tmj/1474652263
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we generalize examples of Lagrangian mean curvature flows constructed by Lee and Wang in C-m to toric almost Calabi-Yau manifolds. To be more precise, we construct examples of weighted Hamiltonian stationary Lagrangian submanifolds in toric almost Calabi-Yau manifolds and solutions of generalized Lagrangian mean curvature flows starting from these examples. We allow these flows to have some singularities and topological changes.
机构:
Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
Chen, Jingyi
Ma, John man shun
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, Dept Math, 1088 Xueyuan Rd, Shenzhen 518055, Guangdong, Peoples R ChinaUniv British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada