Length scale of a chaotic element in Rayleigh-Benard convection

被引:2
|
作者
Karimi, A. [1 ]
Paul, M. R. [2 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
SPATIOTEMPORAL CHAOS; PATTERN-FORMATION; DIMENSION;
D O I
10.1103/PhysRevE.86.066212
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We describe an approach to quantify the length scale of a chaotic element of a Rayleigh-Benard convection layer exhibiting spatiotemporal chaos. The length scale of a chaotic element is determined by simultaneously evolving the dynamics of two convection layers with a unidirectional coupling that involves only the time-varying values of the fluid velocity and temperature on the lateral boundaries of the domain. In our results we numerically simulate the full Boussinesq equations for the precise conditions of experiment. By varying the size of the boundary used for the coupling we identify a length scale that describes the size of a chaotic element. The length scale of the chaotic element is of the same order of magnitude, and exhibits similar trends, as the natural chaotic length scale that is based upon the fractal dimension. DOI: 10.1103/PhysRevE.86.066212
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Correlation length in the Rayleigh-Benard convection
    Shibata, Hiroshi
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (02)
  • [2] Chaotic Rayleigh-Benard convection with finite sidewalls
    Xu, M.
    Paul, M. R.
    [J]. PHYSICAL REVIEW E, 2018, 98 (01)
  • [3] Chaotic travelling rolls in Rayleigh-Benard convection
    Paul, Supriyo
    Kumar, Krishna
    Verma, Mahendra K.
    Carati, Daniele
    De, Arnab K.
    Eswaran, Vinayak
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2010, 74 (01): : 75 - 82
  • [4] Covariant Lyapunov vectors of chaotic Rayleigh-Benard convection
    Xu, M.
    Paul, M. R.
    [J]. PHYSICAL REVIEW E, 2016, 93 (06)
  • [5] RAYLEIGH-BENARD CONVECTION
    BERGE, P
    DUBOIS, M
    [J]. CONTEMPORARY PHYSICS, 1984, 25 (06) : 535 - 582
  • [6] TIME AND LENGTH SCALES IN ROTATING RAYLEIGH-BENARD CONVECTION
    HU, YC
    ECKE, RE
    AHLERS, G
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (25) : 5040 - 5043
  • [7] VORTICITY SCALE AND INTEGRAL VALUES OF RAYLEIGH-BENARD CONVECTION
    Palymskiy, Igor
    [J]. COMPUTATIONAL THERMAL SCIENCES, 2014, 6 (02): : 113 - 127
  • [8] Physical and scale-by-scale analysis of Rayleigh-Benard convection
    Togni, Riccardo
    Cimarelli, Andrea
    De Angelis, Elisabetta
    [J]. JOURNAL OF FLUID MECHANICS, 2015, 782 : 380 - 404
  • [9] Large-scale patterns in Rayleigh-Benard convection
    von Hardenberg, J.
    Parodi, A.
    Passoni, G.
    Provenzale, A.
    Spiegel, E. A.
    [J]. PHYSICS LETTERS A, 2008, 372 (13) : 2223 - 2229
  • [10] Scaling in Rayleigh-Benard convection
    Lindborg, Erik
    [J]. JOURNAL OF FLUID MECHANICS, 2023, 956