Finding spatio-temporal patterns in climate data using clustering

被引:3
|
作者
Sap, MNM [1 ]
Awan, AM [1 ]
机构
[1] Univ Technol Malaysia, Fac Comp Sci & Informat Syst, Johor Baharu 81310, Malaysia
关键词
D O I
10.1109/CW.2005.45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data non-linearly separable in input space. This work gets inspiration from the notion that a non-linear data transformation into some high dimensional feature space increases the possibility of linear separability of the patterns in the transformed space. Therefore, it simplifies exploration of the associated structure in the data. Kernel methods implicitly perform a non-linear mapping of the input data into a high dimensional feature space by replacing the inner products with an appropriate positive definite function. In this paper we present a robust weighted kernel k-means algorithm incorporating spatial constraints for clustering climate data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data.
引用
收藏
页码:155 / 162
页数:8
相关论文
共 50 条
  • [1] Discovery of Patterns in Spatio-Temporal Data Using Clustering Techniques
    Aryal, Amar Mani
    Wang, Sujing
    [J]. 2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), 2017, : 990 - 995
  • [2] Functional distributional clustering using spatio-temporal data
    Venkatasubramaniam, A.
    Evers, L.
    Thakuriah, P.
    Ampountolas, K.
    [J]. JOURNAL OF APPLIED STATISTICS, 2023, 50 (04) : 909 - 926
  • [3] Clustering Dynamic Spatio-Temporal Patterns in the Presence of Noise and Missing Data
    Chen, Xi C.
    Faghmous, James H.
    Khandelwal, Ankush
    Kumar, Vipin
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 2575 - 2581
  • [4] Local Clustering in Spatio-Temporal Point Patterns
    Mateu, Jorge
    Rodriguez-Cortes, Francisco J.
    [J]. MATHEMATICS OF PLANET EARTH, 2014, : 171 - 174
  • [5] Spatio-Temporal Data Clustering using Deep Learning: A Review
    Aparna, R.
    Idicula, Sumam Mary
    [J]. 2022 IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (IEEE EAIS 2022), 2022,
  • [6] Spatio-Temporal Patterns in Climate and Hydrologic Features
    Akram, Khondekar Mahabub
    Ridwan, Mahmud
    Ezaz, Tarif
    Rahman, Rashedur M.
    [J]. 2013 INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV), 2013,
  • [7] FlowMiner: Finding flow patterns in spatio-temporal databases
    Wang, JM
    Hsu, W
    Lee, ML
    Wang, J
    [J]. ICTAI 2004: 16TH IEEE INTERNATIONALCONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, : 14 - 21
  • [8] Spatio-Temporal Clustering of Road Network Data
    Cheng, Tao
    Anbaroglu, Berk
    [J]. ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT I, 2010, 6319 : 116 - 123
  • [9] Spatio-Temporal Clustering of Traffic Data with Deep Embedded Clustering
    Asadi, Reza
    Regan, Amelia
    [J]. PREDICTGIS 2019: PROCEEDINGS OF THE 3RD ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON PREDICTION OF HUMAN MOBILITY (PREDICTGIS 2019), 2019, : 45 - 52
  • [10] Spatio-temporal climate regionalization using a self-organized clustering approach
    Chidean, Mihaela, I
    Caannano, Antonio J.
    Casanova-Mateo, Carlos
    Ramiro-Bargueno, Julio
    Salcedo-Sanz, Sancho
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 2020, 140 (3-4) : 927 - 949