Online gradient descent learning algorithms

被引:87
|
作者
Ying, Yiming [1 ]
Pontil, Massimiliano [1 ]
机构
[1] UCL, Dept Comp Sci, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
learning theory; online learning; reproducing kernel Hilbert space; gradient descent; error analysis;
D O I
10.1007/s10208-006-0237-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper considers the least-square online gradient descent algorithm in a reproducing kernel Hilbert space (RKHS) without an explicit regularization term. We present a novel capacity independent approach to derive error bounds and convergence results for this algorithm. The essential element in our analysis is the interplay between the generalization error and a weighted cumulative error which we define in the paper. We show that, although the algorithm does not involve an explicit RKHS regularization term, choosing the step sizes appropriately can yield competitive error rates with those in the literature.
引用
收藏
页码:561 / 596
页数:36
相关论文
共 50 条
  • [1] Online Gradient Descent Learning Algorithms
    Yiming Ying
    Massimiliano Pontil
    [J]. Foundations of Computational Mathematics, 2008, 8 : 561 - 596
  • [2] Online Learning With Inexact Proximal Online Gradient Descent Algorithms
    Dixit, Rishabh
    Bedi, Unlit Singh
    Tripathi, Ruchi
    Rajawat, Ketan
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (05) : 1338 - 1352
  • [3] Online gradient descent algorithms for functional data learning
    Chen, Xiaming
    Tang, Bohao
    Fan, Jun
    Guo, Xin
    [J]. JOURNAL OF COMPLEXITY, 2022, 70
  • [4] Simple Stochastic and Online Gradient Descent Algorithms for Pairwise Learning
    Yang, Zhenhuan
    Lei, Yunwen
    Wang, Puyu
    Yang, Tianbao
    Ying, Yiming
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [5] LEARNING BY ONLINE GRADIENT DESCENT
    BIEHL, M
    SCHWARZE, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (03): : 643 - 656
  • [6] On the momentum term in gradient descent learning algorithms
    Qian, N
    [J]. NEURAL NETWORKS, 1999, 12 (01) : 145 - 151
  • [7] Dual Space Gradient Descent for Online Learning
    Trung Le
    Tu Dinh Nguyen
    Vu Nguyen
    Dinh Phung
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [8] Online learning via congregational gradient descent
    Kim L. Blackmore
    Robert C. Williamson
    Iven M. Y. Mareels
    William A. Sethares
    [J]. Mathematics of Control, Signals and Systems, 1997, 10 : 331 - 363
  • [9] Online learning via congregational gradient descent
    Blackmore, RL
    Williamson, RC
    Mareels, IMY
    Sethares, WA
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1997, 10 (04) : 331 - 363
  • [10] Multileave Gradient Descent for Fast Online Learning to Rank
    Schuth, Anne
    Oosterhuis, Harrie
    Whiteson, Shimon
    de Rijke, Maarten
    [J]. PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), 2016, : 457 - 466