Dual concepts of almost distance-regularity and the spectral excess theorem

被引:6
|
作者
Dalfo, C. [1 ]
van Dam, E. R. [2 ]
Fiol, M. A. [1 ]
Garriga, E. [1 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 4, Barcelona, Catalonia, Spain
[2] Tilburg Univ, Dept Econometr & OR, NL-5000 LE Tilburg, Netherlands
关键词
Distance-regular graph; Distance matrices; Eigenvalues; Idempotents; Local spectrum; Predistance polynomials;
D O I
10.1016/j.disc.2012.03.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generally speaking, 'almost distance-regular' graphs share some, but not necessarily all, of the regularity properties that characterize distance-regular graphs. In this paper we propose two new dual concepts of almost distance-regularity, thus giving a better understanding of the properties of distance-regular graphs. More precisely, we characterize m-partially distance-regular graphs and j-punctually eigenspace distance-regular graphs by using their spectra. Our results can also be seen as a generalization of the so-called spectral excess theorem for distance-regular graphs, and they lead to a dual version of it. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2730 / 2734
页数:5
相关论文
共 49 条
  • [1] Spectral bounds and distance-regularity
    Fiol, MA
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 397 : 17 - 33
  • [2] ON DISTANCE-REGULARITY IN GRAPHS
    WEICHSEL, PM
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1982, 32 (02) : 156 - 161
  • [3] Distance-Regularity and the Spectrum of Graphs
    Department of Econometrics, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, Netherlands
    [J]. Linear Algebra Its Appl, (265-278):
  • [4] Distance-regularity and the spectrum of graphs
    Haemers, WH
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 236 : 265 - 278
  • [5] Characterizing distance-regularity of graphs by the spectrum
    van Dam, E. R.
    Haemers, W. H.
    Koolen, J. H.
    Spence, E.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (08) : 1805 - 1820
  • [6] On the weak distance-regularity of Moore-type digraphs
    Comellas, F.
    Fiol, M. A.
    Gimbert, J.
    Mitjana, M.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (04): : 265 - 284
  • [7] The spectral excess theorem for distance-biregular graphs
    Angel Fiol, Miquel
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (03):
  • [8] EQUIVALENT CHARACTERIZATIONS OF THE SPECTRA OF GRAPHS AND APPLICATIONS TO MEASURES OF DISTANCE-REGULARITY
    Diego, Victor
    Fabrega, Josep
    Angel Fiol, Miquel
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2020, 36 : 629 - 644
  • [9] The Laplacian spectral excess theorem for distance-regular graphs
    van Dam, E. R.
    Fiol, M. A.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 : 245 - 250
  • [10] A simple proof of the spectral excess theorem for distance-regular graphs
    Fiol, M. A.
    Gago, S.
    Garriga, E.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2418 - 2422