On fuzzy I-convergent difference sequence spaces

被引:16
|
作者
Tripathy, Binod Chandra [1 ]
Sen, Mausumi [2 ]
机构
[1] Inst Adv Study Sci & Technol, Gauhati 781035, Assam, India
[2] Natl Inst Technol, Silchar, Assam, India
关键词
Fuzzy real numbers; difference sequence; I-convergence; solid space; symmetric space;
D O I
10.3233/IFS-120671
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article we introduce the notions of I-convergent and I-bounded difference sequences of fuzzy real numbers. We study different properties of I-convergent, I-null and I-bounded difference sequence spaces of fuzzy real numbers like completeness, solidness, monotone, symmetricity, sequence algebra, convergence free, nowhere denseness. We prove some inclusion results also.
引用
收藏
页码:643 / 647
页数:5
相关论文
共 50 条
  • [1] Intuitionistic fuzzy I-convergent Fibonacci difference sequence spaces
    Vakeel A. Khan
    Emrah E. Kara
    Henna Altaf
    Nazneen Khan
    Mobeen Ahmad
    Journal of Inequalities and Applications, 2019
  • [2] I-CONVERGENT DIFFERENCE SEQUENCE SPACES
    Khan, Vakeel A.
    Ahmad, Mobeen
    Hasan, S. N.
    Ahmad, Rayees
    JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 10 (02): : 58 - 68
  • [3] Intuitionistic fuzzy I-convergent Fibonacci difference sequence spaces
    Khan, Vakeel A.
    Kara, Emrah E.
    Altaf, Henna
    Khan, Nazneen
    Ahmad, Mobeen
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [4] NEUTROSOPHIC FUZZY I-CONVERGENT FIBONACCI DIFFERENCE SEQUENCE SPACES
    Chaurasiya, Chandan
    Ahmad, Ayaz
    Esi, Ayhan
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024,
  • [5] INTUITIONISTIC FUZZY I-CONVERGENT DIFFERENCE SEQUENCE SPACES DEFINED BY COMPACT OPERATOR
    Kamber, Esra
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (03): : 485 - 494
  • [6] INTUITIONISTIC FUZZY I-CONVERGENT DIFFERENCE SEQUENCE SPACES DEFINED BY MODULUS FUNCTION
    Kamber, Esra
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (01): : 93 - 100
  • [7] Intuitionistic fuzzy Tribonacci I-convergent sequence spaces
    Khan, Vakeel A.
    Rahaman, Sk Ashadul
    MATHEMATICA SLOVACA, 2022, 72 (03) : 693 - 708
  • [8] On Tribonacci I-convergent sequence spaces
    Khan, Vakeel A.
    Khan, Izhar Ali
    Rahaman, S. K. Ashadul
    Ahmad, Ayaz
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2022, 24 (03): : 225 - 234
  • [9] On Hilbert I-convergent sequence spaces
    Khan, Vakeel A.
    Alshlool, Kamal M. A. S.
    Alam, Masood
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 20 (03): : 225 - 233
  • [10] Paranorm I-convergent sequence spaces
    Tripathy, Biond Chandra
    Hazarika, Bipan
    MATHEMATICA SLOVACA, 2009, 59 (04) : 485 - 494