Robust constraints on dark energy and gravity from galaxy clustering data

被引:16
|
作者
Wang, Yun [1 ]
机构
[1] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA
关键词
Cosmology: observations; distance scale; large-scale structure of Universe; BARYONIC ACOUSTIC-OSCILLATIONS; POWER-SPECTRUM; REDSHIFT SURVEY; FORECASTS; UNIVERSE; MATTER; SPACE; BIAS;
D O I
10.1111/j.1365-2966.2012.21170.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Galaxy clustering data provide a powerful probe of dark energy. We examine how the constraints on the scaled expansion history of the Universe, xh(z) =H(z)s (with s denoting the sound horizon at the drag epoch), and the scaled angular diameter distance, xd(z) =DA(z)/s, depend on the methods used to analyse the galaxy clustering data. We find that using the observed galaxy power spectrum, Pobsg(k), xh(z) and xd(z) are measured more accurately and are significantly less correlated with each other, compared to using only the information from the baryon acoustic oscillations (BAO) in Pobsg(k). Using the {xh(z), xd(z)} from Pobsg(k) gives a Dark Energy Task Force (DETF) dark energy figure of merit (FoM) approximately a factor of 2 larger than using the {xh(z), xd(z)} from BAO only; this provides a robust conservative method to go beyond BAO only in extracting dark energy information from galaxy clustering data. We find that a Stage IV galaxy redshift survey, with 0.7 < z < 2 over 15 000 (deg)2, can measure with high precision [where fg(z) and G(z) are the linear growth rate and factor of large-scale structure, respectively, and is the dimensionless normalization of Pobsg(k)], when redshift-space distortion information is included. The measurement of provides a powerful test of gravity, and significantly boosts the dark energy FoM when general relativity is assumed.
引用
收藏
页码:3631 / 3637
页数:7
相关论文
共 50 条
  • [1] Modelling galaxy clustering on small scales to tighten constraints on dark energy and modified gravity
    Wang, Yun
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (03) : 3005 - 3012
  • [2] New dark energy constraints from supernovae, microwave background, and galaxy clustering
    Wang, Y
    Tegmark, M
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (24) : 241302 - 1
  • [3] Robust dark energy constraints from supernovae, galaxy clustering, and 3 yr Wilkinson Microwave Anisotropy Probe observations
    Wang, Yun
    Mukherjee, Pia
    [J]. ASTROPHYSICAL JOURNAL, 2006, 650 (01): : 1 - 6
  • [4] Galaxy clustering and dark energy
    Munshi, D
    Porciani, C
    Wang, Y
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 349 (01) : 281 - 290
  • [5] Revealing the nonadiabatic nature of dark energy perturbations from galaxy clustering data
    Velten, Hermano
    Fazolo, Raquel
    [J]. PHYSICAL REVIEW D, 2017, 96 (08)
  • [6] Constraints on Dark Energy Models from Galaxy Clusters and Gravitational Lensing Data
    Bonilla, Alexander
    Castillo, Jairo E.
    [J]. UNIVERSE, 2018, 4 (01)
  • [7] Constraints on Dark Energy from the CSST Galaxy Clusters
    Zhang, Yufei
    Chen, Mingjing
    Wen, Zhonglue
    Fang, Wenjuan
    [J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2023, 23 (04)
  • [8] Constraints on Dark Energy from the CSST Galaxy Clusters
    Yufei Zhang
    Mingjing Chen
    Zhonglue Wen
    Wenjuan Fang
    [J]. Research in Astronomy and Astrophysics, 2023, 23 (04) : 112 - 122
  • [9] Galaxy clustering constraints on deviations from Newtonian gravity at cosmological scales
    Shirata, A
    Shiromizu, T
    Yoshida, N
    Suto, Y
    [J]. PHYSICAL REVIEW D, 2005, 71 (06): : 1 - 8
  • [10] Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing
    Abbott, T. M. C.
    Aguena, M.
    Alarcon, A.
    Allam, S.
    Alves, O.
    Amon, A.
    Andrade-Oliveira, F.
    Annis, J.
    Avila, S.
    Bacon, D.
    Baxter, E.
    Bechtol, K.
    Becker, M. R.
    Bernstein, G. M.
    Bhargava, S.
    Birrer, S.
    Blazek, J.
    Brandao-Souza, A.
    Bridle, S. L.
    Brooks, D.
    Buckley-Geer, E.
    Burke, D. L.
    Camacho, H.
    Campos, A.
    Carnero Rosell, A.
    Carrasco Kind, M.
    Carretero, J.
    Castander, F. J.
    Cawthon, R.
    Chang, C.
    Chen, A.
    Chen, R.
    Choi, A.
    Conselice, C.
    Cordero, J.
    Costanzi, M.
    Crocce, M.
    da Costa, L. N.
    Pereira, M. E. da Silva
    Davis, C.
    Davis, T. M.
    De Vicente, J.
    DeRose, J.
    Desai, S.
    Di Valentino, E.
    Diehl, H. T.
    Dietrich, J. P.
    Dodelson, S.
    Doel, P.
    Doux, C.
    [J]. PHYSICAL REVIEW D, 2022, 105 (02)