Generalized estimating equations: A hybrid approach for mean parameters in multivariate regression models

被引:5
|
作者
Lange, Christoph [1 ]
Whittaker, John C. [2 ]
Macgregor, Alex J. [3 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[2] Univ London Imperial Coll Sci Technol & Med, Sch Med, Dept Epidemiol & Publ Hlth, London, England
[3] St Thomas Hosp, Twin Res & Genet Epidemiol Unit, London, England
基金
美国国家卫生研究院;
关键词
GEE; GEE2; association mapping;
D O I
10.1191/1471082x02st031oa
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose an extension of the generalized estimating equation approach to multivariate regression models (Liang and Zeger, 1986) which allows the estimation of dispersion and association parameters in the covariance matrix partly using estimating equations as in Prentice and Zhao (1991), and partly by the direct use of consistent estimators. The advantages of this hybrid approach over that of Prentice and Zhao (1991) are a reduction in the number of fourth moment assumptions that must be made, and the consequent reduction in numerical complexity. We show that the type of estimation used for covariance parameters does not affect the asymptotic efficiency of the mean parameter estimates. The advantages of the hybrid model are illustrated by a simulation study. This work was motivated by problems in statistical genetics, and we illustrate our approach using a twin study examining association between the osteocalcin receptor and various osteoporisis-related traits.
引用
收藏
页码:163 / 181
页数:19
相关论文
共 50 条
  • [1] Generalized estimating equations for variance and covariance parameters in regression credibility models
    Lo, Chi Ho
    Fung, Wing Kam
    Zhu, Zhong Yi
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2006, 39 (01): : 99 - 113
  • [2] Generalized estimating equations for variance and covariance parameters in regression credibility models.
    Ho, LC
    Kam, FW
    Yi, ZZ
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2005, 37 (02): : 382 - 382
  • [3] A Generalized Estimating Equation Approach to Multivariate Adaptive Regression Splines
    Stoklosa, Jakub
    Warton, David I.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (01) : 245 - 253
  • [4] Analyzing multivariate longitudinal binary data: a generalized estimating equations approach
    Sutradhar, BC
    Farrell, PJ
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2004, 32 (01): : 39 - 55
  • [5] Structural parameter estimation using generalized estimating equations for regression credibility models
    Lo, Chi Ho
    Fung, Wing Kam
    Zhu, Zhong Yi
    [J]. ASTIN BULLETIN, 2007, 37 (02): : 323 - 343
  • [6] A Stochastic Second-Order Generalized Estimating Equations Approach for Estimating Association Parameters
    Chen, Tom
    Tchetgen, Eric J. Tchetgen
    Wang, Rui
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (03) : 547 - 561
  • [7] A generalized estimating equations approach for capture–recapture closed population models
    Md. Abdus Salam Akanda
    Russell Alpizar-Jara
    [J]. Environmental and Ecological Statistics, 2014, 21 : 667 - 688
  • [8] Generalized estimating equations for analyzing multivariate survival data
    Liya, Fu
    Yang, Zhuoran
    Zhang, Jun
    Long, Anle
    Zhou, Yan
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (10) : 3060 - 3068
  • [9] On estimating equations for parameters in generalized linear mixed models with application to binary data
    Bartlett, RF
    Sutradhar, BC
    [J]. ENVIRONMETRICS, 1999, 10 (06) : 769 - 784
  • [10] Regression modelling of weighted κ by using generalized estimating equations
    Gonin, R
    Lipsitz, SR
    Fitzmaurice, GM
    Molenberghs, G
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2000, 49 : 1 - 18