Geometric phase for a two-level system in photonic band gab crystal

被引:4
|
作者
Berrada, K. [1 ,2 ]
机构
[1] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Phys, Riyadh, Saudi Arabia
[2] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, Miramare Trieste, Italy
关键词
Solid state systems; Photonic crystals; Geometric phase; Detuning parameter; SPONTANEOUS EMISSION; QUANTUM COMPUTATION; BERRYS PHASE; EDGE; ATOMS; STATE; QUBIT;
D O I
10.1016/j.ssc.2017.11.013
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this work, we investigate the geometric phase (GP) for a qubit system coupled to its own anisotropic and isotropic photonic band gap (PBG) crystal environment without Born or Markovian approximation. The qubit frequency affects the GP of the qubit directly through the effect of the PBG environment. The results show the deviation of the GP depends on the detuning parameter and this deviation will be large for relatively large detuning of atom frequency inside the gap with respect to the photonic band edge. Whereas for detunings outside the gap, the GP of the qubit changes abruptly to zero, exhibiting collapse phenomenon of the GP. Moreover, we find that the GP in the isotropic PBG photonic crystal is more robust than that in the anisotropic PBG under the same condition. Finally, we explore the relationship between the variation of the GP and population in terms of the physical parameters.
引用
收藏
页码:34 / 38
页数:5
相关论文
共 50 条
  • [1] Geometric phase in open two-level system
    Wang, Z. S.
    Kwek, L. C.
    Lai, C. H.
    Oh, C. H.
    [J]. EUROPHYSICS LETTERS, 2006, 74 (06): : 958 - 964
  • [2] Geometric phase of a two-level system in a dissipative environment
    Fujikawa, Kazuo
    Hu, Ming-Guang
    [J]. PHYSICAL REVIEW A, 2009, 79 (05):
  • [3] A photonic crystal realization of a phase driven two-level atom
    Rodriguez-Lara, B. M.
    Zarate Cardenas, Alejandro
    Soto-Eguibar, Francisco
    Manuel Moya-Cessa, Hector
    [J]. OPTICS COMMUNICATIONS, 2013, 292 : 87 - 91
  • [4] Environmentally induced corrections to the geometric phase in a two-level system
    Lombardo, Fernando C.
    Villar, Paula I.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 : 707 - 713
  • [5] Nonadiabatic geometric phase in a doubly driven two-level system
    Liu, Weixin
    Wang, Tao
    Li, Weidong
    [J]. CHINESE PHYSICS B, 2023, 32 (05)
  • [6] Nonadiabatic geometric phase in a doubly driven two-level system
    刘伟新
    汪涛
    李卫东
    [J]. Chinese Physics B, 2023, 32 (05) : 363 - 369
  • [7] Geometric Phase of a Two-level System Driven by a Classical Field
    Ze Wang
    Jing Nie
    Xiuyi Yang
    [J]. International Journal of Theoretical Physics, 63
  • [8] Geometric phase and quantum correlations for a bipartite two-level system
    Lombardo, Fernando C.
    Villar, Paula I.
    [J]. 7TH INTERNATIONAL WORKSHOP DICE2014 SPACETIME - MATTER - QUANTUM MECHANICS, 2015, 626
  • [9] Geometric Phase of a Two-level System Driven by a Classical Field
    Wang, Ze
    Nie, Jing
    Yang, Xiuyi
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (03)
  • [10] GEOMETRIC PHASE OF OPEN TWO-LEVEL SYSTEMS
    Dajka, Jerzy
    Luczka, Jerzy
    [J]. ACTA PHYSICA POLONICA B, 2012, 43 (05): : 921 - 933