An A∞ structure on simplicial complexes

被引:3
|
作者
Dolotin, V. V. [1 ]
Morozov, A. Yu. [1 ]
Shakirov, Sh. R. [1 ]
机构
[1] Inst Theoret & Expt Phys, Moscow 117259, Russia
基金
俄罗斯基础研究基金会;
关键词
simplicial complex; topology; discrete exterior form; infinity structure;
D O I
10.1007/s11232-008-0093-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a discrete (finite-difference) analogue of differential forms defined on simplicial complexes, in particular, on triangulations of smooth manifolds. Variations operations are explicitly defined on these forms including the exterior differential d and the exterior product boolean AND. The exterior product is nonassociative but satisfies a more general relation, the so-called A(infinity) structure. This structure includes an infinite set of operations constrained by the nilpotency relation (d + boolean AND + m + ...)(n) = 0 of the second degree, n = 2.
引用
收藏
页码:965 / 995
页数:31
相关论文
共 50 条
  • [1] An A∞ structure on simplicial complexes
    V. V. Dolotin
    A. Yu. Morozov
    Sh. R. Shakirov
    [J]. Theoretical and Mathematical Physics, 2008, 156 : 965 - 995
  • [2] SIMPLICIAL COMPLEXES ARE NOT DETERMINED BY THEIR STRUCTURE VECTORS
    EARL, CF
    [J]. ENVIRONMENT AND PLANNING B-PLANNING & DESIGN, 1981, 8 (03): : 349 - 350
  • [3] SIMPLICIAL PRODUCTS OF SIMPLICIAL COMPLEXES
    EILENBERG, S
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (01) : 70 - 70
  • [4] Simplicial Complexes
    Schmidt, Gunther
    Winter, Michael
    [J]. RELATIONAL TOPOLOGY, 2018, 2208 : 155 - 181
  • [5] Shellability of simplicial complexes and simplicial complexes with the free vertex property
    Zhu, Guangjun
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (01) : 181 - 190
  • [6] Simplicial Complexes are Game Complexes
    Faridi, Sara
    Huntemann, Svenja
    Nowakowski, Richard J.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [7] The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes
    Jean-Daniel Boissonnat
    Clément Maria
    [J]. Algorithmica, 2014, 70 : 406 - 427
  • [8] The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes
    Boissonnat, Jean-Daniel
    Maria, Clement
    [J]. ALGORITHMICA, 2014, 70 (03) : 406 - 427
  • [9] The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes
    Boissonnat, Jean-Daniel
    Maria, Clement
    [J]. ALGORITHMS - ESA 2012, 2012, 7501 : 731 - 742
  • [10] NOTE ON COMBINATORIAL STRUCTURE OF SELF-DUAL SIMPLICIAL COMPLEXES
    Timotijevic, Marinko
    [J]. MATEMATICKI VESNIK, 2019, 71 (1-2): : 104 - 122