Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery

被引:147
|
作者
Xie, Qiaoyun [1 ]
Dash, Jadu [2 ]
Huete, Alfredo [1 ]
Jiang, Aihui [3 ]
Yin, Gaofei [4 ]
Ding, Yanling [5 ]
Peng, Dailiang [6 ]
Hall, Christopher C. [1 ]
Brown, Luke [2 ]
Shi, Yue [6 ]
Ye, Huichun [6 ]
Dong, Yingying [6 ]
Huang, Wenjiang [6 ]
机构
[1] Univ Technol Sydney, Fac Sci, Sydney, NSW 2007, Australia
[2] Univ Southampton, Sch Geog & Environm Sci, Southampton SO17 1BJ, Hants, England
[3] Shandong Normal Univ, Coll Geog & Environm, Jinan 250358, Shandong, Peoples R China
[4] Southwest Jiaotong Univ, Fac Geosci & Environm Engn, Chengdu 610031, Sichuan, Peoples R China
[5] Northeast Normal Univ, Sch Geog Sci, Changchun 130024, Jilin, Peoples R China
[6] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Leaf area index; Chlorophyll content; Artificial neural network; Look-up table; Vegetation index; LEAF-AREA INDEX; VEGETATION INDEXES; SPECTRAL REFLECTANCE; CHLOROPHYLL CONTENT; OPTICAL-PROPERTIES; GREEN LAI; RED-EDGE; VARIABLES; INVERSION; MODEL;
D O I
10.1016/j.jag.2019.04.019
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The red-edge bands place the recently available multispectral Sentinel-2 imagery at an advantage over other multispectral sensors, and hypothetically offer improved crop biophysical variable retrieval accuracy. In this study, Sentinel-2 data was tested for its ability to estimate winter wheat leaf area index (LAI), leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC). Artificial neural network (ANN) and look-up table (LUT) (based on PROSAIL simulations) and vegetation index (VI) methods were applied to retrieve biophysical parameters, and compared with the biophysical processor module embedded in the Sentinel Application Platform (SNAP) software. Based on a set of in situ measurements (62 samples) and near-synchronous Sentinel-2 images, the inversion approaches were applied and validated. The results showed that: 1) Sentinel-2 red-edge bands improved the retrievals of chlorophyll / LAI compared to traditional VIs; 2) the red-edge VIs outperformed other approaches; and 3) the SNAP biophysical processor obtained comparable accuracies of LAI and CCC estimation compared to the ANN and LUT approaches, giving R-2 values above 0.5 with relatively low RMSE (1.53 m(2)/m(2) for LM, and 148.58 mu g/cm(2) for CCC). We recommend VI retrieval approach for small region with ground measurements, whereas where ground data is not available, SNAP is applicable for versatile and rapid winter wheat parameter estimation (though results need to be evaluated alongside the provided quality indicators). Summarizing, the results demonstrate the suitability of Sentinel-2 data, especially its red-edge bands, for crop biophysical variables retrieval. Future studies will need to make comparisons across canopy types to better assess the capability of the SNAP biophysical processor.
引用
收藏
页码:187 / 195
页数:9
相关论文
共 50 条
  • [1] Retrieval of lake water surface albedo from Sentinel-2 remote sensing imagery
    Du, Jia
    Zhou, Haohao
    Jacinthe, Pierre-Andre
    Song, Kaishan
    [J]. JOURNAL OF HYDROLOGY, 2023, 617
  • [2] Estimating Crop Biophysical Parameters Using Machine Learning Algorithms and Sentinel-2 Imagery
    Kganyago, Mahlatse
    Mhangara, Paidamwoyo
    Adjorlolo, Clement
    [J]. REMOTE SENSING, 2021, 13 (21)
  • [3] Remote Sensing of Grassland Biophysical Parameters in the Context of the Sentinel-2 Satellite Mission
    Sakowska, Karolina
    Juszczak, Radoslaw
    Gianelle, Damiano
    [J]. JOURNAL OF SENSORS, 2016, 2016
  • [4] Estimation of lake ecological quality from Sentinel-2 remote sensing imagery
    Free, Gary
    Bresciani, Mariano
    Trodd, Wayne
    Tierney, Deirdre
    O'Boyle, Shane
    Plant, Caroline
    Deakin, Jenny
    [J]. HYDROBIOLOGIA, 2020, 847 (06) : 1423 - 1438
  • [5] Estimation of lake ecological quality from Sentinel-2 remote sensing imagery
    Gary Free
    Mariano Bresciani
    Wayne Trodd
    Deirdre Tierney
    Shane O’Boyle
    Caroline Plant
    Jenny Deakin
    [J]. Hydrobiologia, 2020, 847 : 1423 - 1438
  • [6] Mapping Productivity and Essential Biophysical Parameters of Cultivated Tropical Grasslands from Sentinel-2 Imagery
    Cisneros, Amparo
    Fiorio, Peterson
    Menezes, Patricia
    Pasqualotto, Nieves
    Van Wittenberghe, Shari
    Bayma, Gustavo
    Nogueira, Sandra Furlan
    [J]. AGRONOMY-BASEL, 2020, 10 (05):
  • [7] Retrieval of soil salinity from Sentinel-2 multispectral imagery
    Taghadosi, Mohammad Mahdi
    Hasanlou, Mahdi
    Eftekhari, Kamran
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2019, 52 (01) : 138 - 154
  • [8] EFFICIENT REMOTE SENSING TRANSFORMER FOR COASTLINE DETECTION WITH SENTINEL-2 SATELLITE IMAGERY
    Wang, Yuji
    Zhao, Ruojun
    Sun, Zijun
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5439 - 5442
  • [9] Remote sensing retrieval of inland water quality parameters using Sentinel-2 and multiple machine learning algorithms
    Shang Tian
    Hongwei Guo
    Wang Xu
    Xiaotong Zhu
    Bo Wang
    Qinghuai Zeng
    Youquan Mai
    Jinhui Jeanne Huang
    [J]. Environmental Science and Pollution Research, 2023, 30 : 18617 - 18630
  • [10] Remote sensing retrieval of inland water quality parameters using Sentinel-2 and multiple machine learning algorithms
    Tian, Shang
    Guo, Hongwei
    Xu, Wang
    Zhu, Xiaotong
    Wang, Bo
    Zeng, Qinghuai
    Mai, Youquan
    Huang, Jinhui Jeanne
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (07) : 18617 - 18630