Composite Likelihood Estimation for Multivariate Probit Latent Traits Models

被引:5
|
作者
Feddag, M. -L. [1 ]
机构
[1] Univ Southampton, Stat Sci Res Inst, Southampton SO17 1BJ, Hants, England
关键词
Composite likelihood; Fixed effects; Gauss Hermite quadrature; Generalized linear mixed model; Health related quality of life; Longitudinal data; Maximum marginal likelihood; Pairwise likelihood; Probit link; Random effects; Rasch model; GENERALIZED ESTIMATING EQUATIONS; PAIRWISE LIKELIHOOD; LINEAR-MODELS; BINARY; INFERENCE;
D O I
10.1080/03610926.2010.538793
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Inference in generalized linear mixed models with multivariate random effects is often made cumbersome by the high-dimensional intractable integrals involved in the marginal likelihood. This article presents an inferential methodology based on the marginal composite likelihood approach for the probit latent traits models. This method belonging to the broad class of pseudo-likelihood involves marginal pairs probabilities of the responses which has analytical expression. The different results are illustrated with a simulation study and with an analysis of real data from health related quality of life.
引用
收藏
页码:2551 / 2566
页数:16
相关论文
共 50 条
  • [1] Fast Multivariate Probit Estimation via a Two-Stage Composite Likelihood
    Ting, Bryan
    Wright, Fred
    Zhou, Yi-Hui
    [J]. STATISTICS IN BIOSCIENCES, 2022, 14 (03) : 533 - 549
  • [2] Fast Multivariate Probit Estimation via a Two-Stage Composite Likelihood
    Bryan Ting
    Fred Wright
    Yi-Hui Zhou
    [J]. Statistics in Biosciences, 2022, 14 : 533 - 549
  • [3] Estimation of multivariate probit models via bivariate probit
    Mullahy, John
    [J]. STATA JOURNAL, 2016, 16 (01): : 37 - 51
  • [4] Approximate likelihood estimation of spatial probit models
    Martinetti, Davide
    Geniaux, Ghislain
    [J]. REGIONAL SCIENCE AND URBAN ECONOMICS, 2017, 64 : 30 - 45
  • [5] Maximum likelihood estimation of multinomial probit factor analysis models for multivariate t-distribution
    Jiang, Jie
    Liu, Xinsheng
    Yu, Keming
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (04) : 1485 - 1500
  • [6] Maximum likelihood estimation of multinomial probit factor analysis models for multivariate t-distribution
    Jie Jiang
    Xinsheng Liu
    Keming Yu
    [J]. Computational Statistics, 2013, 28 : 1485 - 1500
  • [7] QUASI-MAXIMUM LIKELIHOOD ESTIMATION OF MULTIVARIATE PROBIT MODELS - FARM COUPLES LABOR PARTICIPATION
    KIMHI, A
    [J]. AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 1994, 76 (04) : 828 - 835
  • [8] Local influence analysis of multivariate probit latent variable models
    Lu, Bin
    Song, Xin-Yuan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (08) : 1783 - 1798
  • [9] A pairwise likelihood approach to estimation in multilevel probit models
    Renard, D
    Molenberghs, G
    Geys, H
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 44 (04) : 649 - 667
  • [10] Partial maximum likelihood estimation of spatial probit models
    Wang, Honglin
    Iglesias, Emma M.
    Wooldridge, Jeffrey M.
    [J]. JOURNAL OF ECONOMETRICS, 2013, 172 (01) : 77 - 89