Non Intrusive Polynomial Chaos-based Stochastic Macromodeling of Multiport Systems

被引:14
|
作者
Spina, D. [1 ]
Ferranti, F. [1 ]
Antonini, G. [2 ]
Dhaene, T. [1 ]
Knockaert, L. [1 ]
机构
[1] Ghent Univ IMinds, Dept Informat Technol, Internet Based Commun Networks & Serv IBCN, Gaston Crommenlaan 8 Bus 201, B-9000 Ghent, Belgium
[2] Univ Aquila, Dipartimento Ingn Elettr & Informaz, UAq EMC Lab, I-67100 Laquila, Italy
关键词
VARIABILITY ANALYSIS;
D O I
10.1109/SAPIW.2014.6844542
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel technique to efficiently perform the variability analysis of electromagnetic systems. The proposed method calculates a Polynomial Chaos-based macromodel of the system transfer function that includes its statistical properties. The combination of a non-intrusive Polynomial Chaos approach with the Vector Fitting algorithm allows to describe the system variability features with accuracy and efficiency. The results of the variability analysis performed with the proposed method are verified by means of comparison with respect to the standard Monte Carlo analysis.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Polynomial chaos-based macromodeling of multiport systems using an input-output approach
    Spina, Domenico
    Ferranti, Francesco
    Dhaene, Tom
    Knockaert, Luc
    Antonini, Giulio
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2015, 28 (05) : 562 - 581
  • [2] Polynomial Chaos-Based Macromodeling of General Linear Multiport Systems for Time-Domain Analysis
    Spina, Domenico
    Dhaene, Tom
    Knockaert, Luc
    Antonini, Giulio
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2017, 65 (05) : 1422 - 1433
  • [3] On the Passivity of Polynomial Chaos-Based Augmented Models for Stochastic Circuits
    Manfredi, Paolo
    Vande Ginste, Dries
    De Zutter, Daniel
    Canavero, Flavio G.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2013, 60 (11) : 2998 - 3007
  • [4] Stochastic Macromodeling of Nonlinear Systems Via Polynomial Chaos Expansion and Transfer Function Trajectories
    Spina, Domenico
    De Jonghe, Dimitri
    Deschrijver, Dirk
    Gielen, Georges
    Knockaert, Luc
    Dhaene, Tom
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2014, 62 (07) : 1454 - 1460
  • [5] Rational Polynomial Chaos Expansions for the Stochastic Macromodeling of Network Responses
    Manfredi, Paolo
    Grivet-Talocia, Stefano
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (01) : 225 - 234
  • [6] Rational Polynomial Chaos Expansions for the Stochastic Macromodeling of Network Responses
    Manfredi, Paolo
    Grivet-Talocia, Stefano
    IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67 (01): : 225 - 234
  • [7] Enhancing the Design of Textile Antennas with a Polynomial Chaos-based Stochastic Framework
    Rossi, Marco
    Agneessens, Sam
    Vande Ginste, Dries
    Rogier, Hendrik
    2016 URSI INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC THEORY (EMTS), 2016, : 520 - 523
  • [8] Polynomial Chaos-Based Robust Design of Systems with Probabilistic Uncertainties
    Shen, Dongying E.
    Braatz, Richard D.
    AICHE JOURNAL, 2016, 62 (09) : 3310 - 3318
  • [9] Compressed Stochastic Macromodeling of Electrical Systems via Rational Polynomial Chaos and Principal Component Analysis
    Manfredi, Paolo
    Grivet-Talocia, Stefano
    PROCEEDINGS OF THE 2021 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (APEMC 2021), 2021,
  • [10] Uncertainty Quantification for CFD Simulation of Stochastic Drag Flow Based on Non-Intrusive Polynomial Chaos Method
    Xia L.
    Zou Z.
    Yuan S.
    Zeng Z.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2020, 54 (06): : 584 - 591