Uniformization of p-adic curves via Higgs-de Rham flows

被引:7
|
作者
Lan, Guitang [1 ]
Sheng, Mao [2 ]
Yang, Yanhong [1 ]
Zuo, Kang [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, D-55099 Mainz, Germany
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
NONABELIAN HODGE THEORY;
D O I
10.1515/crelle-2016-0020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an algebraic closure of a finite field of odd characteristic. We prove that for any rank two graded Higgs bundle with maximal Higgs field over a generic hyperbolic curve X-1 defined over k, there exists a lifting X of the curve to the ring W(k) of Witt vectors as well as a lifting of the Higgs bundle to a periodic Higgs bundle over X / W(k). These liftings give rise to a two-dimensional absolutely irreducible representation of the arithmetic fundamental group pi(1) (X-K) of the generic fiber of X. This curve X and its associated representation is in close relation to the canonical curve and its associated canonical crystalline representation in the p-adic Teichmuller theory for curves due to S. Mochizuki. Our result may be viewed as an analogue of the Hitchin-Simpson's uniformization theory of hyperbolic Riemann surfaces via Higgs bundles.
引用
收藏
页码:63 / 108
页数:46
相关论文
共 50 条
  • [1] A note on Higgs-de Rham flows of level zero
    Mao Sheng
    Jilong Tong
    [J]. Science China Mathematics, 2021, 64 (02) : 307 - 330
  • [2] A note on Higgs-de Rham flows of level zero
    Mao Sheng
    Jilong Tong
    [J]. Science China Mathematics, 2021, 64 : 307 - 330
  • [3] A note on Higgs-de Rham flows of level zero
    Sheng, Mao
    Tong, Jilong
    [J]. SCIENCE CHINA-MATHEMATICS, 2021, 64 (02) : 307 - 330
  • [4] Uniformization of modular elliptic curves via p-adic periods
    Guitart, Xavier
    Masdeu, Marc
    Senguen, Mehmet Haluk
    [J]. JOURNAL OF ALGEBRA, 2016, 445 : 458 - 502
  • [5] p-adic periods, p-adic L-functions, and the p-adic uniformization of Shimura curves
    Bertolini, M
    Darmon, H
    [J]. DUKE MATHEMATICAL JOURNAL, 1999, 98 (02) : 305 - 334
  • [6] p-adic de Rham constructibility
    Mebkhout, Zoghman
    [J]. COMPTES RENDUS MATHEMATIQUE, 2013, 351 (15-16) : 617 - 621
  • [7] Height pairings on Shimura curves and p-adic uniformization
    Kudla, SS
    Rapoport, M
    [J]. INVENTIONES MATHEMATICAE, 2000, 142 (01) : 153 - 223
  • [8] ON THE DE RHAM AND p-ADIC REALIZATIONS OF THE ELLIPTIC POLYLOGARITHM FOR CM ELLIPTIC CURVES
    Bannai, Kenichi
    Kobayashi, Shinichi
    Tsuji, Takeshi
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2010, 43 (02): : 185 - 234
  • [9] Height pairings on Shimura curves and p-adic uniformization
    Stephen S. Kudla
    Michael Rapoport
    [J]. Inventiones mathematicae, 2000, 142 : 153 - 223
  • [10] Metric uniformization of morphisms of Berkovich curves via p-adic differential equations
    Francesco Baldassarri
    Velibor Bojković
    [J]. Israel Journal of Mathematics, 2021, 242 : 797 - 838