Systems of Quantum Logic

被引:0
|
作者
Titani, Satoko [1 ]
Kodera, Heiji [2 ]
Aoyama, Hiroshi [3 ]
机构
[1] Chubu Univ, Kasugai, Aichi 4878501, Japan
[2] Aichi Univ Educ, Kariya, Aichi 4488542, Japan
[3] Tokaigakuen Univ, Fac Humanities, Nagoya, Aichi 4688514, Japan
关键词
Logic; Modality; Quantum theory; Set theory;
D O I
10.1007/s11225-011-9364-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Logical implications are closely related to modal operators. Lattice-valued logic LL and quantum logic QL were formulated in Titani S (1999) Lattice Valued Set Theory. Arch Math Logic 38:395-421, Titani S (2009) A Completeness Theorem of Quantum Set Theory. In: Engesser K, Gabbay DM, Lehmann D (eds) Handbook of Quantum Logic and Quantum Structures: Quantum Logic. Elsevier Science Ltd., pp. 661-702, by introducing the basic implication -> which represents the lattice order. In this paper, we fomulate a predicate orthologic provided with the basic implication, which corresponds to complete ortholattices, and then formulate a quantum logic which is equivalent to QL, by using a modal operator instead of the basic implication.
引用
收藏
页码:193 / 217
页数:25
相关论文
共 50 条
  • [41] Quantum logic as motivated by quantum computing
    Dunn, JM
    Hagge, TJ
    Moss, LS
    Wang, ZG
    JOURNAL OF SYMBOLIC LOGIC, 2005, 70 (02) : 353 - 359
  • [42] Quantum logic and macroscopic quantum games
    Grib, A.
    QUANTUM THEORY: RECONSIDERATION OF FOUNDATIONS - 4, 2007, 962 : 91 - 97
  • [43] ON QUANTUM LOGIC APPROACH TO QUANTUM MECHANICS
    GUDDER, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 12 (01) : 1 - &
  • [44] Dynamic quantum logic for quantum programs
    Brunet, O
    Jorrand, P
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2004, 2 (01) : 45 - 54
  • [45] Quantum logic for genuine quantum simulators
    Pavicic, M
    QUANTUM COMPUTING, 2000, 4047 : 90 - 96
  • [46] Qubitless Quantum Logic
    Kassman, Richard B.
    Berman, Gennady P.
    Tsifrinovich, Vladimir I.
    Lopez, Gustavo V.
    QUANTUM INFORMATION PROCESSING, 2002, 1 (06) : 425 - 437
  • [47] REFLECTIONS ON QUANTUM LOGIC
    MOROZ, BZ
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1983, 22 (04) : 329 - 340
  • [48] UNIFIED QUANTUM LOGIC
    PAVICIC, M
    FOUNDATIONS OF PHYSICS, 1989, 19 (08) : 999 - 1016
  • [49] Quantum logic is undecidable
    Tobias Fritz
    Archive for Mathematical Logic, 2021, 60 : 329 - 341
  • [50] ON STRUCTURE OF QUANTUM LOGIC
    FINCH, PD
    JOURNAL OF SYMBOLIC LOGIC, 1969, 34 (02) : 275 - &