Studying signal collection in the punch-through protection area of a silicon micro-strip sensor using a micro-focused X-ray beam

被引:0
|
作者
Poley, L. [1 ]
Bates, R. [2 ]
Bloch, I. [1 ]
Blue, A. J. [2 ]
Fadeyev, V. [3 ]
Meng, L. [4 ]
Rehnisch, L. [5 ]
Stegler, M. [1 ]
Unno, Y. [6 ]
机构
[1] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany
[2] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
[3] Univ Calif Santa Cruz, SCIPP, Santa Cruz, CA 95064 USA
[4] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England
[5] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[6] High Energy Accelerator Res Org KEK, Inst Particle & Nucl Study, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan
基金
英国科学技术设施理事会;
关键词
ATLAS; Silicon strip sensors; Radiation damage; Punch-through protection; ACCELERATOR;
D O I
10.1016/j.nima.2018.06.085
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
For the Phase-II Upgrade of the ATLAS detector (The ATLAS Collaboration, 2008 [1]), a new, all-silicon tracker will be constructed in order to cope with the increased track density and radiation level of the High-Luminosity Large Hadron Collider. While silicon strip sensors are designed to minimise the fraction of dead material and maximise the active area of a sensor, concessions must be made to the requirements of operating a sensor in a particle physics detector. Sensor geometry features like the punch-through protection deviate from the standard sensor architecture and thereby affect the charge collection in that area. In order to study the signal collection of n(+)-p(-)-p(+) silicon strip sensors over their punch-through-protection area, ATLAS silicon strip sensors were scanned with a micro-focused X-ray beam at the Diamond Light Source. Due to the highly focused X-ray beam (2 x 3 mu m(2)) and the short average path length of an electron after interaction with an X-ray photon (<= 2 mu m), local signal collection in different sensor areas can be studied with high resolution. This study presents results of high resolution 2D-scans of the punch-through protection region of ATLAS silicon micro-strip sensors, showing how far the strip signal collection area extends towards the bias ring and how the region is affected by radiation damage.
引用
收藏
页码:116 / 119
页数:4
相关论文
共 30 条
  • [1] Characterisation of Ge micro-strip sensors with a micro-focused X-ray beam
    Borri, M.
    Cohen, C.
    Fox, O.
    Groves, J.
    Helsby, W.
    Mathon, O.
    McNicholl, L.
    Pascarelli, S.
    Sawhney, K.
    Torchio, R.
    Zuvic, M.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2021, 988
  • [2] Mapping the depleted area of silicon diodes using a micro-focused X-ray beam
    Poley, L.
    Blue, A.
    Bloch, I
    Buttar, C.
    Fadeyev, V
    Fernandez-Tejero, J.
    Fleta, C.
    Hacker, J.
    Lacasta Llacer, C.
    Minano, M.
    Renzmann, M.
    Rossi, E.
    Sawyer, C.
    Sperlich, D.
    Stegler, M.
    Ullan, M.
    Unno, Y.
    JOURNAL OF INSTRUMENTATION, 2019, 14 (03):
  • [3] Characterisation of edgeless technologies for pixellated and strip silicon detectors with a micro-focused X-ray beam
    Bates, R.
    Blue, A.
    Christophersen, M.
    Eklund, L.
    Ely, S.
    Fadeyev, V.
    Gimenez, E.
    Kachkanov, V.
    Kalliopuska, J.
    Macchiolo, A.
    Maneuski, D.
    Phlips, B. F.
    Sadrozinski, H. F. -W.
    Stewart, G.
    Tartoni, N.
    Zain, R. M.
    JOURNAL OF INSTRUMENTATION, 2013, 8
  • [4] Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam
    Poley, L.
    Blue, A.
    Bates, R.
    Bloch, I.
    Diez, S.
    Fernandez-Tejero, J.
    Fleta, C.
    Gallop, B.
    Greenall, A.
    Gregor, I. -M.
    Hara, K.
    Ikegami, Y.
    Lacasta, C.
    Lohwasser, K.
    Maneuski, D.
    Nagorski, S.
    Pape, I.
    Phillips, P. W.
    Sperlich, D.
    Sawhney, K.
    Soldevila, U.
    Ullan, M.
    Unno, Y.
    Warren, M.
    JOURNAL OF INSTRUMENTATION, 2016, 11
  • [5] Visualisation of grain crushing using micro-focused X-ray CT scanning
    Yan, W. M.
    Shi, Y.
    Mukunoki, T.
    Sato, T.
    Otani, J.
    Geomechanics from Micro to Macro, Vols I and II, 2015, : 1131 - 1135
  • [6] Versatile atomic force microscopy setup combined with micro-focused X-ray beam
    Slobodskyy, T.
    Zozulya, A. V.
    Tholapi, R.
    Liefeith, L.
    Fester, M.
    Sprung, M.
    Hansen, W.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (06):
  • [7] In situ micro-focused X-ray beam characterization with a lensless camera using a hybrid pixel detector
    Kachatkou, Anton
    Marchal, Julien
    van Silfhout, Roelof
    JOURNAL OF SYNCHROTRON RADIATION, 2014, 21 : 333 - 339
  • [8] Nondestructive evaluation of composites using Micro-Focused X-Ray CT Scanner
    Sugimoto, S
    Aoki, T
    Iwahori, Y
    Ishikawa, T
    Review of Progress in Quantitative Nondestructive Evaluation, Vols 24A and 24B, 2005, 760 : 1081 - 1086
  • [9] X-ray phase contrast imaging using a micro-focused electron source
    Chang Shengcheng
    Zhu Zhuoya
    Lei Wei
    Zhang Xiaobing
    Li Yuan
    Yang Hua
    2016 29TH INTERNATIONAL VACUUM NANOELECTRONICS CONFERENCE (IVNC), 2016,
  • [10] Micro-focused MHz pink beam for time-resolved X-ray emission spectroscopy
    Tu, Ming-Feng
    Doumy, Gilles
    Al Haddad, Andre
    March, Anne Marie
    Southworth, Stephen H.
    Assoufid, Lahsen
    Kumagai, Yoshiaki
    Walko, Donald A.
    DiChiara, Anthony D.
    Liu, Zunping
    Shi, Bing
    Young, Linda
    Bostedt, Christoph
    JOURNAL OF SYNCHROTRON RADIATION, 2019, 26 : 1956 - 1966