Classification of simple Lie algebras on a lattice

被引:6
|
作者
Iohara, Kenji [1 ]
Mathieu, Olivier [1 ]
机构
[1] Univ Lyon 1, Inst Camille Jordan, UMR 5028, CNRS 43, F-69622 Villeurbanne, France
关键词
VIRASORO ALGEBRA; REPRESENTATIONS; MODULES;
D O I
10.1112/plms/pds042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Lambda=Z(n) for some n >= 1. The aim of the paper is to classify all simple Lambda-graded Lie algebras L=circle plus(lambda is an element of Lambda) L-lambda such that dim L-lambda=1 for all lambda. The classification involves two affine Lie algebras, namely A1(1) and A2(2), and a family (W-pi), parametrized by a dense open set of the space of all embeddings pi: Lambda ->(2). The family (W-l) of generalized Witt algebras, indexed by all embeddings l:Lambda ->, appears as a subfamily. In general, the algebras W-pi are described as Lie algebras of symbols of twisted pseudo-differential operators.
引用
收藏
页码:508 / 564
页数:57
相关论文
共 50 条