IsMo-GAN: Adversarial Learning for Monocular Non-Rigid 3D Reconstruction

被引:10
|
作者
Shimada, Soshi [1 ,2 ]
Golyanik, Vladislav [1 ,3 ]
Theobalt, Christian [3 ]
Stricker, Didier [1 ,2 ]
机构
[1] Univ Kaiserslautern, Kaiserslautern, Germany
[2] DFKI, Kaiserslautern, Germany
[3] MPI Informat, Saarbrucken, Germany
关键词
SHAPE; FLOW;
D O I
10.1109/CVPRW.2019.00347
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The majority of the existing methods for non-rigid 3D surface regression from a single 2D image require an object template or point tracks over multiple frames as an input, and are still far from real-time processing rates. In this work, we present the Isometry-Aware Monocular Generative Adversarial Network (IsMo-GAN) - an approach for direct 3D reconstruction from a single image, trained for the deformation model in an adversarial manner on a light-weight synthetic dataset. IsMo-GAN reconstructs surfaces from real images under varying illumination, camera poses, textures and shading at over 250 Hz. In multiple experiments, it consistently outperforms multiple approaches in the reconstruction accuracy, runtime, generalisation to unknown surfaces and robustness to occlusions. In comparison to the state-of-the-art, we reduce the reconstruction error by 10-30% including the textureless case and our surfaces evince fewer artefacts qualitatively.
引用
收藏
页码:2876 / 2885
页数:10
相关论文
共 50 条
  • [1] State of the Art in Dense Monocular Non-Rigid 3D Reconstruction
    Tretschk, Edith
    Kairanda, Navami
    Mallikarjun, B. R.
    Dabral, Rishabh
    Kortylewski, Adam
    Egger, Bernhard
    Habermann, Marc
    Fua, Pascal
    Theobalt, Christian
    Golyanik, Vladislav
    [J]. COMPUTER GRAPHICS FORUM, 2023, 42 (02) : 485 - 520
  • [2] 3D Reconstruction of Non-Rigid Surfaces from Realistic Monocular Video
    Sepehrinour, Maryam
    Kasaei, Shohreh
    [J]. 2015 9TH IRANIAN CONFERENCE ON MACHINE VISION AND IMAGE PROCESSING (MVIP), 2015, : 199 - 202
  • [3] Beyond Feature Points: Structured Prediction for Monocular Non-rigid 3D Reconstruction
    Salzmann, Mathieu
    Urtasun, Raquel
    [J]. COMPUTER VISION - ECCV 2012, PT IV, 2012, 7575 : 245 - 259
  • [4] Root Pose Decomposition Towards Generic Non-rigid 3D Reconstruction with Monocular Videos
    Wang, Yikai
    Dong, Yinpeng
    Sun, Fuchun
    Yang, Xiao
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 13844 - 13854
  • [5] HDM-Net: Monocular Non-rigid 3D Reconstruction with Learned Deformation Model
    Golyanik, Vladislav
    Shimada, Soshi
    Varanasi, Kiran
    Stricker, Didier
    [J]. VIRTUAL REALITY AND AUGMENTED REALITY, EUROVR 2018, 2018, 11162 : 51 - 72
  • [6] Accurate reconstruction of non-rigid 3D shapes
    Koh, Sung Shik
    Zin, Thi Thi
    Hama, Hiromitsu
    [J]. ICCE: 2007 DIGEST OF TECHNICAL PAPERS INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, 2007, : 369 - +
  • [7] Unsupervised 3D Reconstruction and Grouping of Rigid and Non-Rigid Categories
    Agudo, Antonio
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (01) : 519 - 532
  • [8] Template-Based 3D Reconstruction of Non-rigid Deformable Object from Monocular Video
    Liu, Yang
    Peng, Xiaodong
    Zhou, Wugen
    Liu, Bo
    Gerndt, Andreas
    [J]. 3D RESEARCH, 2018, 9 (02):
  • [9] KillingFusion: Non-rigid 3D Reconstruction without Correspondences
    Slavcheva, Miroslava
    Baust, Maximilian
    Cremers, Daniel
    Ilic, Slobodan
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5474 - 5483
  • [10] Texture reconstruction of 3D sculpture using non-rigid transformation
    Zhang, Fan
    Huang, Xianfeng
    Fang, Wei
    Zhang, Zhichao
    Li, Deren
    Zhu, Yixuan
    [J]. JOURNAL OF CULTURAL HERITAGE, 2015, 16 (05) : 648 - 655