Weighted-average least squares estimation of generalized linear models

被引:16
|
作者
De Luca, Giuseppe [1 ]
Magnus, Jan R. [2 ,3 ]
Peracchi, Franco [4 ,5 ,6 ]
机构
[1] Univ Palermo, Palermo, Italy
[2] Vrije Univ Amsterdam, Amsterdam, Netherlands
[3] Tinbergen Inst, Amsterdam, Netherlands
[4] Georgetown Univ, Washington, DC 20057 USA
[5] EIEF, Rome, Italy
[6] Univ Roma Tor Vergata, Rome, Italy
关键词
WALS; Model averaging; Generalized linear models; Monte Carlo; Attrition; VARIABLE SELECTION; REGRESSION-COEFFICIENTS; POST-SELECTION; INFERENCE; UNCERTAINTY; LIKELIHOOD; SHRINKAGE;
D O I
10.1016/j.jeconom.2017.12.007
中图分类号
F [经济];
学科分类号
02 ;
摘要
The weighted-average least squares (WALS) approach, introduced by Magnus et al. (2010) in the context of Gaussian linear models, has been shown to enjoy important advantages Over other strictly Bayesian and strictly frequentist model-averaging estimators when accounting for problems of uncertainty in the choice of the regressors. In this paper we extend the WALS approach to deal with uncertainty about the specification of the linear predictor in the wider class of generalized linear models (GLMs). We study the large-sample properties of the WALS estimator for GLMs under a local misspecification framework, and the finite-sample properties of this estimator by a Monte Carlo experiment the design of which is based on a real empirical analysis of attrition in the first two waves of the Survey of Health, Aging and Retirement in Europe (SHARE). (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] Weighted-Average Least Squares Prediction
    Magnus, Jan R.
    Wang, Wendun
    Zhang, Xinyu
    [J]. ECONOMETRIC REVIEWS, 2016, 35 (06) : 1040 - 1074
  • [2] WEIGHTED-AVERAGE LEAST SQUARES (WALS): A SURVEY
    Magnus, Jan R.
    De Luca, Giuseppe
    [J]. JOURNAL OF ECONOMIC SURVEYS, 2016, 30 (01) : 117 - 148
  • [3] Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals
    De Luca, Giuseppe
    Magnus, Jan R.
    Peracchi, Franco
    [J]. COMPUTATIONAL ECONOMICS, 2023, 61 (04) : 1637 - 1664
  • [4] Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals
    Giuseppe De Luca
    Jan R. Magnus
    Franco Peracchi
    [J]. Computational Economics, 2023, 61 : 1637 - 1664
  • [5] Weighted-Average Least Squares Applied to Spatial Econometric Models: A Monte Carlo Investigation
    Seya, Hajime
    Tsutsumi, Morito
    Yamagata, Yoshiki
    [J]. GEOGRAPHICAL ANALYSIS, 2014, 46 (02) : 126 - 147
  • [6] Bayesian model averaging and weighted-average least squares: Equivariance, stability, and numerical issues
    De Luca, Giuseppe
    Magnus, Jan R.
    [J]. STATA JOURNAL, 2011, 11 (04): : 518 - 544
  • [7] A generalized least squares estimation method for invertible vector moving average models
    de Frutos, RF
    Serrano, GR
    [J]. ECONOMICS LETTERS, 1997, 57 (02) : 149 - 156
  • [8] GENERALIZED LEAST SQUARES AND WEIGHTED LEAST SQUARES ESTIMATION METHODS FOR DISTRIBUTIONAL PARAMETERS
    Kantar, Yeliz Mert
    [J]. REVSTAT-STATISTICAL JOURNAL, 2015, 13 (03) : 263 - +
  • [9] Frequency weighted generalized total least squares linear prediction for frequency estimation
    Leung, SH
    Lee, TH
    Lau, WH
    [J]. PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 2233 - 2236