Lateral linear mode avalanche photodiode through 0.35 μm high voltage CMOS process

被引:0
|
作者
Guo-Hao, Ju [1 ,2 ,3 ]
Zheng-Xi, Cheng [1 ]
Yong-Ping, Chen [1 ,4 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[4] Nantong Acad Intelligent Sensing, Nantong 226000, Peoples R China
关键词
avalanche photodiode; lateral SACM; high voltage CMOS; breakdown voltage; SILICON; RECEIVER; SPEED;
D O I
10.11972/j.issn.1001-9014.2022.04.002
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This letter reports on a lateral linear mode avalanche photodiode through 0. 35 p.m high voltage CMOS process. The linear mode avalanche photodiode is designed and fabricated with the lateral separate absorption, charge and multiplication (SACM) structure using an epitaxial wafer. The DNTUB layer. DPTUB layer, Pi layer and SPTUB layer are used for the lateral SACM structure. This improves freedom of the design and fabrication for monolithic integrated avalanche photodiode without high voltage CMOS process modifications. The breakdown voltage for the lateral linear mode avalanche photodiode is about 114. 7 V. The dark currents at gain M = 10 and M = 50 are about 15 nA and 66 nA, respectively. The effective responsive wavelength range is 450 similar to 1050 nm. And the peak responsive wavelength is about 775 nm at 20 V while M = 1. With unity gain (M = 1), the responsivity at 532 nm is about half of the maximum.
引用
收藏
页码:668 / 671
页数:4
相关论文
共 15 条
  • [1] Optical Wireless APD Receiver With High Background-Light Immunity for Increased Communication Distances
    Brandl, Paul
    Jukic, Tomislav
    Enne, Reinhard
    Schneider-Hornstein, Kerstin
    Zimmermann, Horst
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2016, 51 (07) : 1663 - 1673
  • [2] OWC Using a Fully Integrated Optical Receiver With Large-Diameter APD
    Brandl, Paul
    Enne, Reinhard
    Jukic, Tomislav
    Zimmermann, Horst
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2015, 27 (05) : 482 - 485
  • [3] Design of low noise avalanche photodiode single element detectors and linear arrays through CMOS process
    Cheng, Zhengxi
    Xu, Heliang
    Chen, Yongping
    [J]. ADVANCED PHOTON COUNTING TECHNIQUES XIII, 2019, 10978
  • [4] QUANTUM EFFICIENCY OF INTERNAL PHOTOELECTRIC EFFECT IN SILICON AND GERMANIUM
    CHRISTENSEN, O
    [J]. JOURNAL OF APPLIED PHYSICS, 1976, 47 (02) : 689 - 695
  • [5] 3-GHz Silicon Photodiodes Integrated in a 0.18-μm CMOS Technology
    Ciftcioglu, Berkehan
    Zhang, Jie
    Zhang, Lin
    Marciante, John R.
    Zuegel, Jonathan D.
    Sobolewski, Roman
    Wu, Hlli
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2008, 20 (21-24) : 2069 - 2071
  • [6] Speed optimized linear-mode high-voltage CMOS avalanche photodiodes with high responsivity
    Enne, R.
    Steindl, B.
    Zimmermann, H.
    [J]. OPTICS LETTERS, 2015, 40 (19) : 4400 - 4403
  • [7] Improvement of CMOS-Integrated Vertical APDs by Applying Lateral Well Modulation
    Enne, Reinhard
    Steindl, Bernhard
    Zimmermann, Horst
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2015, 27 (18) : 1907 - 1910
  • [8] 850-nm Edge-Illuminated Si Photodiodes Fabricated With CMOS-MEMS Technology
    Hsieh, Yu-Chen
    Chou, Fang-Ping
    Wang, Ching-Wen
    Huang, Chih-Ai
    Hsin, Yue-Ming
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2013, 25 (20) : 2018 - 2021
  • [9] Iiyama K, 2009, P IEEE EUR C OPT COM, P1
  • [10] Ripoche G., 2009, Optoelectronic Sensors, P58