Random uniform exponential attractors for non-autonomous stochastic Schr o?dinger lattice systems in weighted space

被引:1
|
作者
Lin, Rou [1 ]
Zhao, Min [1 ]
Zhang, Jinlu [1 ]
机构
[1] Wenzhou Univ, Dept Math, Wenzhou 325035, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 8卷 / 02期
关键词
non-autonomous Schr ?dinger lattice system; random uniform exponential attractor; weighted space; quasi-periodic force; multiplicative white noise; NONLINEAR SCHRODINGER-EQUATION; DYNAMICAL-SYSTEMS; EXISTENCE;
D O I
10.3934/math.2023150
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We mainly study the existence of random uniform exponential attractors for non -autonomous stochastic Schr delta dinger lattice system with multiplicative white noise and quasi-periodic forces in weighted spaces. Firstly, the stochastic Schr delta dinger system is transformed into a random system without white noise by the Ornstein-Uhlenbeck process, whose solution generates a jointly continuous non-autonomous random dynamical system phi. Secondly, we prove the existence of a uniform absorbing random set for phi in weighted spaces. Finally, we obtain the existence of a random uniform exponential attractor for the considered system phi in weighted space.
引用
收藏
页码:2871 / 2890
页数:20
相关论文
共 50 条