Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation

被引:85
|
作者
Liu, Xi [1 ]
Qu, Hua [1 ,2 ]
Zhao, Jihong [1 ]
Yue, Pengcheng [1 ]
Wang, Meng [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Software Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
unscented Kalman filter (UKF); unscented transformation (UT); maximum correntropy criterion (MCC); NAVIGATION; ALGORITHM;
D O I
10.3390/s16091530
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A new algorithm called maximum correntropy unscented Kalman filter (MCUKF) is proposed and applied to relative state estimation in space communication networks. As is well known, the unscented Kalman filter (UKF) provides an efficient tool to solve the non-linear state estimate problem. However, the UKF usually plays well in Gaussian noises. Its performance may deteriorate substantially in the presence of non-Gaussian noises, especially when the measurements are disturbed by some heavy-tailed impulsive noises. By making use of the maximum correntropy criterion (MCC), the proposed algorithm can enhance the robustness of UKF against impulsive noises. In the MCUKF, the unscented transformation (UT) is applied to obtain a predicted state estimation and covariance matrix, and a nonlinear regression method with the MCC cost is then used to reformulate the measurement information. Finally, the UT is adopted to the measurement equation to obtain the filter state and covariance matrix. Illustrative examples demonstrate the superior performance of the new algorithm.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Improved Maximum Correntropy Unscented Kalman Filter for Spacecraft Attitude Estimation
    Chu, Shuai
    Qian, Huaming
    Ding, Peng
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2023, 21 (06) : 2020 - 2030
  • [2] Improved Maximum Correntropy Unscented Kalman Filter for Spacecraft Attitude Estimation
    Shuai Chu
    Huaming Qian
    Peng Ding
    International Journal of Control, Automation and Systems, 2023, 21 : 2020 - 2030
  • [3] Robust State Estimation With Maximum Correntropy Rotating Geometric Unscented Kalman Filter
    Chen, Shanmou
    Zhang, Qiangqiang
    Zhang, Tao
    Zhang, Lingcong
    Peng, Lina
    Wang, Shiyuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [4] Joint Estimation of Vehicle State and Parameter Based on Maximum Correntropy Adaptive Unscented Kalman Filter
    Zhang, Feng
    Feng, Jingan
    Qi, Dengliang
    Liu, Ya
    Shao, Wenping
    Qi, Jiaao
    Lin, Yuangang
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2023, 24 (06) : 1553 - 1566
  • [5] Maximum Correntropy with Variable Center Unscented Kalman Filter for Robust Power System State Estimation
    Sun, Zhenglong
    Liu, Chuanlin
    Peng, Siyuan
    ENTROPY, 2022, 24 (04)
  • [6] Joint Estimation of Vehicle State and Parameter Based on Maximum Correntropy Adaptive Unscented Kalman Filter
    Feng Zhang
    Jingan Feng
    Dengliang Qi
    Ya Liu
    Wenping Shao
    Jiaao Qi
    Yuangang Lin
    International Journal of Automotive Technology, 2023, 24 : 1553 - 1566
  • [7] Adaptive robust maximum correntropy cubature Kalman filter for spacecraft attitude estimation
    Chu, Shuai
    Qian, Huaming
    Yan, Shuya
    Ding, Peng
    ADVANCES IN SPACE RESEARCH, 2023, 72 (08) : 3376 - 3385
  • [8] Maximum correntropy unscented filter
    Liu, Xi
    Chen, Badong
    Xu, Bin
    Wu, Zongze
    Honeine, Paul
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (08) : 1607 - 1615
  • [9] State Estimation under Outliers by the Maximum Correntropy Extended Kalman Filter
    Wang, Shu-Yuan
    Yang, Zi-Jiang
    2021 60TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2021, : 1426 - 1431
  • [10] Robust Power System Forecasting-Aided State Estimation With Generalized Maximum Mixture Correntropy Unscented Kalman Filter
    Zhao, Haiquan
    Tian, Boyu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71