Optimization of process parameters for bio-oil synthesis from pine needles (Pinus roxburghii) using response surface methodology

被引:43
|
作者
Mandal, Sandip [1 ,2 ]
Bhattacharya, T. K. [2 ]
Verma, A. K. [3 ]
Haydary, Juma [4 ]
机构
[1] ICAR Cent Inst Agr Engn, Bhopal 462038, India
[2] Gobind Ballabh Pant Univ Agr & Technol, Dept Farm Machinery & Power, Coll Technol, Pantnagar 263145, Uttarakhand, India
[3] Gobind Ballabh Pant Univ Agr & Technol, Dept Biochem, Coll Basic Sci & Humanity, Pantnagar 263145, Uttarakhand, India
[4] Slovak Univ Technol Bratislava, Inst Chem & Environm Engn, Fac Chem & Food Technol, Radlinskeho 9, Bratislava 81237, Slovakia
关键词
Pine needle; Pyrolysis; RSM; Bio-oil; Biochar; INTERMEDIATE PYROLYSIS; FTIR SPECTROSCOPY; MESUA-FERREA; FOREST-FIRES; BIOMASS; BIOCHAR; ENERGY; WOOD; PRETREATMENT; COMBUSTION;
D O I
10.1007/s11696-017-0306-5
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pine needles are the residue of pine (Pinus roxburghii) forest and a major cause of forest fire in the North Western hills of India. Experiments were conducted to convert pine needles into bio-oil and biochar through pyrolysis as an alternate way to use pine needles to reduce forest fire. Process parameters such as pyrolysis temperature, gas flow rate, vapor cooling temperature, heating rate were optimized by employing central composite design (CCD) in Response Surface Methodology (RSM). The maximum bio-oil yield was found at pyrolysis temperature of 547 A degrees C, CO2 gas flow rate of 1.85 l min(-1), vapor cooling temperature of 15 A degrees C and heating rate of 50 A degrees C min(-1). Chemical characterization of bio-oil was conducted using Fourier Transform Infrared (FTIR) spectroscopy and gas chromatographic/mass spectroscopy (GC/MS). Fuel properties of bio-oil and biochar were determined using ASTM standard methods. The bio-oil recovered was found to be comparable with conventional liquid fuels in many aspects. The by-product, biochar, was found suitable as soil amendment as well as solid fuel with higher energy density than the pine needles. [GRAPHICS] .
引用
收藏
页码:603 / 616
页数:14
相关论文
共 50 条
  • [1] Optimization of process parameters for bio-oil synthesis from pine needles (Pinus roxburghii) using response surface methodology
    Sandip Mandal
    T. K. Bhattacharya
    A. K. Verma
    Juma Haydary
    Chemical Papers, 2018, 72 : 603 - 616
  • [2] Bio-oil analysis and optimization of bio-oil yield from vacuum pyrolysis of rape straw using response surface methodology
    Fan, Yong-Sheng
    Cai, Yi-Xi
    Li, Xiao-Hua
    Zhang, Rong-Xian
    Yin, Hai-Yun
    Yu, Ning
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2015, 29 (03): : 628 - 633
  • [3] Optimization of bio-oil production parameters from the pyrolysis of elephant grass (Pennisetum purpureum) using response surface methodology
    Ikpeseni, Sunday C.
    Sada, Samuel O.
    Efetobor, Ufuoma J.
    Orugba, Henry O.
    Ekpu, Mathias
    Owamah, Hilary, I
    Chukwuneke, Jeremiah L.
    Oyebisi, Solomon
    Onochie, Uche P.
    CLEAN ENERGY, 2024, 8 (05): : 241 - 251
  • [4] Fast pyrolysis of greenhouse waste into bio-oil and optimization of process conditions using response surface methodology
    Zakari Boubacar Laougé
    Cantekin Çorbacıoğlu
    Hasan Merdun
    Biomass Conversion and Biorefinery, 2023, 13 : 9807 - 9819
  • [5] Fast pyrolysis of greenhouse waste into bio-oil and optimization of process conditions using response surface methodology
    Laouge, Zakari Boubacar
    Corbacioglu, Cantekin
    Merdun, Hasan
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (11) : 9807 - 9819
  • [6] Dilute acid pretreatment of pine needles of Pinus roxburghii by response surface methodology for bioethanol production by separate hydrolysis and fermentation
    Parvez Singh Slathia
    Neelu Raina
    Asha Kiran
    Rizem Kour
    Deepali Bhagat
    Preeti Sharma
    Biomass Conversion and Biorefinery, 2020, 10 : 95 - 106
  • [7] Dilute acid pretreatment of pine needles of Pinus roxburghii by response surface methodology for bioethanol production by separate hydrolysis and fermentation
    Slathia, Parvez Singh
    Raina, Neelu
    Kiran, Asha
    Kour, Rizem
    Bhagat, Deepali
    Sharma, Preeti
    BIOMASS CONVERSION AND BIOREFINERY, 2020, 10 (01) : 95 - 106
  • [8] Pyrolysis of pine needles: Parameter optimization using response surface methodology
    Omvesh
    Jindal, Meenu
    Thallada, Bhaskar
    Palla, Venkata Chandra Sekhar
    BIORESOURCE TECHNOLOGY REPORTS, 2023, 22
  • [9] Pyrolysis of aquatic fern and macroalgae biomass into bio-oil: Comparison and optimization of operational parameters using response surface methodology
    Wu, Pei
    Zhang, Xia
    Wang, Jing
    Yang, Jia
    Peng, Xuanwei
    Feng, Li
    Zu, Bo
    Xie, Yudong
    Li, Mengke
    JOURNAL OF THE ENERGY INSTITUTE, 2021, 97 : 194 - 202
  • [10] Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology
    Abnisa, Faisal
    Daud, W. M. A. Wan
    Sahu, J. N.
    BIOMASS & BIOENERGY, 2011, 35 (08): : 3604 - 3616